### GenericAgent-AgentTrek-1.0-32b this agent is GenericAgent from Agentlab - **Base Model:** - Qwen/Qwen2.5-32B-Instruct - **Architecture:** - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias - Number of Parameters: 32.5B - Number of Paramaters (Non-Embedding): 31.0B - Number of Layers: 64 - Number of Attention Heads (GQA): 40 for Q and 8 for KV - Input/Output Format: - with the following flags: ```txt flags=GenericPromptFlags( obs=ObsFlags( use_html=True, use_ax_tree=True, use_tabs=False, use_focused_element=False, use_error_logs=True, use_history=True, use_past_error_logs=False, use_action_history=True, use_think_history=False, use_diff=False, html_type='pruned_html', use_screenshot=False, use_som=False, extract_visible_tag=False, extract_clickable_tag=False, extract_coords='False', filter_visible_elements_only=False, openai_vision_detail='auto', filter_with_bid_only=False, filter_som_only=False ), action=ActionFlags( action_set=HighLevelActionSetArgs( subsets=('miniwob_all',), multiaction=False, strict=False, retry_with_force=True, demo_mode='off' ), long_description=False, individual_examples=False, multi_actions=None, is_strict=None ), use_plan=False, use_criticise=False, use_thinking=True, use_memory=True, use_concrete_example=True, use_abstract_example=True, use_hints=False, enable_chat=False, max_prompt_tokens=40000, be_cautious=True, extra_instructions=None, add_missparsed_messages=True, max_trunc_itr=20, flag_group=None ) ``` - Training Details - Dataset used: [AgentTrek-6K](https://agenttrek.github.io) - Number of training steps: 3 Epochs - Paper Link: - https://arxiv.org/abs/2412.09605 - Code Repository: - https://agenttrek.github.io - Lisense: - apache2.0