File size: 11,739 Bytes
8627a70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea81237
8627a70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import json
import re
import os
import streamlit as st
import requests
import pandas as pd
from io import StringIO
import plotly.graph_objs as go
from huggingface_hub import HfApi
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
import streamlit.components.v1 as components

# BENCHMARKS = ["WorkArena-L1", "WorkArena++-L2", "WorkArena++-L3", "MiniWoB", "WebArena"]
BENCHMARKS = ["WebArena", "WorkArena-L1", "WorkArena++-L2", "WorkArena++-L3", "MiniWoB",]

def create_html_table_main(df, benchmarks):
    col1, col2 = st.columns([2,6])
    with col1:
        sort_column = st.selectbox("Sort by", df.columns.tolist())
    with col2:
        sort_order = st.radio("Order", ["Ascending", "Descending"], horizontal=True)
    
    # Sort dataframe
    if sort_order == "Ascending":
        df = df.sort_values(by=sort_column)
    else:
        df = df.sort_values(by=sort_column, ascending=False)
    
    # Create HTML table without JavaScript sorting
    html = '''
    <style>
        table {
            width: 100%;
            border-collapse: collapse;
        }
        th, td {
            border: 1px solid #ddd;
            padding: 8px;
            text-align: center;
        }
        th {
            font-weight: bold;
        }
        .table-container {
            padding-bottom: 20px;
        }
    </style>
    '''
    html += '<div class="table-container">'
    html += '<table>'
    html += '<thead><tr>'
    for column in df.columns:
        html += f'<th>{column}</th>'
    html += '</tr></thead>'
    html += '<tbody>'
    for _, row in df.iterrows():
        html += '<tr>'
        for col in df.columns:
            html += f'<td>{row[col]}</td>'
        html += '</tr>'
    html += '</tbody></table>'
    html += '</div>'
    return html

def create_html_table_benchmark(df, benchmarks):
    # Create HTML table without JavaScript sorting
    html = '''
    <style>
        table {
            width: 100%;
            border-collapse: collapse;
        }
        th, td {
            border: 1px solid #ddd;
            padding: 8px;
            text-align: center;
        }
        th {
            font-weight: bold;
        }
        .table-container {
            padding-bottom: 20px;
        }
    </style>
    '''
    html += '<div class="table-container">'
    html += '<table>'
    html += '<thead><tr>'
    for column in df.columns:
        if column != "Reproduced_all":
            html += f'<th>{column}</th>'
    html += '</tr></thead>'
    html += '<tbody>'
    for _, row in df.iterrows():
        html += '<tr>'
        for column in df.columns:
            if column == "Reproduced":
                if row[column] == "-":
                    html += f'<td>{row[column]}</td>'
                else:
                    html += f'<td><details><summary>{row[column]}</summary>{"<br>".join(map(str, row["Reproduced_all"]))}</details></td>'
            elif column == "Reproduced_all":
                continue
            else:
                html += f'<td>{row[column]}</td>'
        html += '</tr>'
    html += '</tbody></table>'
    html += '</div>'
    return html

def check_sanity(agent):
    for benchmark in BENCHMARKS:
        file_path = f"results/{agent}/{benchmark.lower()}.json"
        if not os.path.exists(file_path):
            continue
        original_count = 0
        with open(file_path) as f:
            results = json.load(f)
            for result in results:
                if not all(key in result for key in ["agent_name", "benchmark", "original_or_reproduced", "score", "std_err", "benchmark_specific", "benchmark_tuned", "followed_evaluation_protocol", "reproducible", "comments", "study_id", "date_time"]):
                    return False
                if result["agent_name"] != agent:
                    return False
                if result["benchmark"] != benchmark:
                    return False
                if result["original_or_reproduced"] == "Original":
                    original_count += 1
        if original_count != 1:
            return False
    return True

def main():
    st.set_page_config(page_title="WebAgent Leaderboard", layout="wide")

    all_agents = os.listdir("results")
    all_results = {}
    for agent in all_agents:
        if not check_sanity(agent):
            st.error(f"Results for {agent} are not in the correct format.")
            continue
        agent_results = []
        for benchmark in BENCHMARKS:
            with open(f"results/{agent}/{benchmark.lower()}.json") as f:
                agent_results.extend(json.load(f))
        all_results[agent] = agent_results

    st.title("πŸ† BrowserGym Leaderboard")
    st.markdown("Leaderboard to evaluate LLMs, VLMs, and agents on web navigation tasks.")
    # content = create_yall()
    # tab1, tab2, tab3, tab4 = st.tabs(["πŸ† WebAgent Leaderboard", "WorkArena++-L2 Leaderboard", "WorkArena++-L3 Leaderboard", "πŸ“ About"])
    tabs = st.tabs(["πŸ† WebAgent Leaderboard",] +  BENCHMARKS + ["πŸ“ About"])

    with tabs[0]:
        # Leaderboard tab
        def get_leaderboard_dict(results):
            leaderboard_dict = []
            for key, values in results.items():
                result_dict = {"Agent": key}
                for benchmark in BENCHMARKS:
                    if any(value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original" for value in values):
                        result_dict[benchmark] = [value["score"] for value in values if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original"][0]
                    else:
                        result_dict[benchmark] = "-"
                leaderboard_dict.append(result_dict)
            return leaderboard_dict
        leaderboard_dict = get_leaderboard_dict(all_results)
        # print (leaderboard_dict)
        full_df = pd.DataFrame.from_dict(leaderboard_dict)

        df = pd.DataFrame(columns=full_df.columns)
        dfs_to_concat = []
        dfs_to_concat.append(full_df)

        # Concatenate the DataFrames
        if dfs_to_concat:
            df = pd.concat(dfs_to_concat, ignore_index=True)

        # df['Average'] = sum(df[column] for column in BENCHMARKS)/len(BENCHMARKS)
        # df['Average'] = df['Average'].round(2)
        # Sort values
        df = df.sort_values(by='WebArena', ascending=False)

        # Add a search bar
        search_query = st.text_input("Search agents", "", key="search_main")

        # Filter the DataFrame based on the search query
        if search_query:
            df = df[df['Agent'].str.contains(search_query, case=False)]

        # Display the filtered DataFrame or the entire leaderboard

        def make_hyperlink(agent_name):
            url = f"https://huggingface.co/spaces/meghsn/WebAgent-Leaderboard/blob/main/results/{agent_name}/README.md"
            return f'<a href="{url}" target="_blank">{agent_name}</a>'
        df['Agent'] = df['Agent'].apply(make_hyperlink)
        # st.dataframe(
        #     df[['Agent'] + BENCHMARKS],
        #     use_container_width=True,
        #     column_config={benchmark: {'alignment': 'center'} for benchmark in BENCHMARKS},
        #     hide_index=True,
        #     # height=int(len(df) * 36.2),
        # )
        # st.markdown(df.to_html(escape=False, index=False), unsafe_allow_html=True)
        html_table = create_html_table_main(df, BENCHMARKS)
        # print (html_table)
        st.markdown(html_table, unsafe_allow_html=True)
        # components.html(html_table, height=600, scrolling=True)

        if st.button("Export to CSV", key="export_main"):
            # Export the DataFrame to CSV
            csv_data = df.to_csv(index=False)

            # Create a link to download the CSV file
            st.download_button(
                label="Download CSV",
                data=csv_data,
                file_name="leaderboard.csv",
                key="download-csv",
                help="Click to download the CSV file",
            )

    with tabs[-1]:
            st.markdown('''
                    ### Leaderboard to evaluate LLMs, VLMs, and agents on web navigation tasks.
                ''')
    for i, benchmark in enumerate(BENCHMARKS, start=1):
        with tabs[i]:
            def get_benchmark_dict(results, benchmark):
                benchmark_dict = []
                for key, values in results.items():
                    result_dict = {"Agent": key}
                    flag = 0
                    for value in values:
                        if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original":
                            result_dict["Score"] = value["score"]
                            result_dict["Benchmark Specific"] = value["benchmark_specific"]
                            result_dict["Benchmark Tuned"] = value["benchmark_tuned"]
                            result_dict["Followed Evaluation Protocol"] = value["followed_evaluation_protocol"]
                            result_dict["Reproducible"] = value["reproducible"]
                            result_dict["Comments"] = value["comments"]
                            result_dict["Study ID"] = value["study_id"]
                            result_dict["Date"] = value["date_time"]
                            result_dict["Reproduced"] = []
                            result_dict["Reproduced_all"] = []
                            flag = 1
                        if not flag:
                            result_dict["Score"] = "-"
                            result_dict["Benchmark Specific"] = "-"
                            result_dict["Benchmark Tuned"] = "-"
                            result_dict["Followed Evaluation Protocol"] = "-"
                            result_dict["Reproducible"] = "-"
                            result_dict["Comments"] = "-"
                            result_dict["Study ID"] = "-"
                            result_dict["Date"] = "-"
                            result_dict["Reproduced"] = []
                            result_dict["Reproduced_all"] = []
                        if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Reproduced":
                            result_dict["Reproduced"].append(value["score"])
                            result_dict["Reproduced_all"].append(", ".join([str(value["score"]), str(value["date_time"])]))
                    if result_dict["Reproduced"]:
                        result_dict["Reproduced"] = str(min(result_dict["Reproduced"])) + " - " + str(max(result_dict["Reproduced"]))
                    else:
                        result_dict["Reproduced"] = "-"
                    benchmark_dict.append(result_dict)
                return benchmark_dict
            benchmark_dict = get_benchmark_dict(all_results, benchmark=benchmark)
            # print (leaderboard_dict)
            full_df = pd.DataFrame.from_dict(benchmark_dict)
            df_ = pd.DataFrame(columns=full_df.columns)
            dfs_to_concat = []
            dfs_to_concat.append(full_df)

            # Concatenate the DataFrames
            if dfs_to_concat:
                df_ = pd.concat(dfs_to_concat, ignore_index=True)
            # st.markdown(f"<h2 id='{benchmark.lower()}'>{benchmark}</h2>", unsafe_allow_html=True)
            # st.dataframe(
            #     df_,
            #     use_container_width=True,
            #     column_config={benchmark: {'alignment': 'center'}},
            #     hide_index=True,
            # )
            html_table = create_html_table_benchmark(df_, BENCHMARKS)
            st.markdown(html_table, unsafe_allow_html=True)
                
        
if __name__ == "__main__":
    main()