File size: 11,739 Bytes
8627a70 ea81237 8627a70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import json
import re
import os
import streamlit as st
import requests
import pandas as pd
from io import StringIO
import plotly.graph_objs as go
from huggingface_hub import HfApi
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
import streamlit.components.v1 as components
# BENCHMARKS = ["WorkArena-L1", "WorkArena++-L2", "WorkArena++-L3", "MiniWoB", "WebArena"]
BENCHMARKS = ["WebArena", "WorkArena-L1", "WorkArena++-L2", "WorkArena++-L3", "MiniWoB",]
def create_html_table_main(df, benchmarks):
col1, col2 = st.columns([2,6])
with col1:
sort_column = st.selectbox("Sort by", df.columns.tolist())
with col2:
sort_order = st.radio("Order", ["Ascending", "Descending"], horizontal=True)
# Sort dataframe
if sort_order == "Ascending":
df = df.sort_values(by=sort_column)
else:
df = df.sort_values(by=sort_column, ascending=False)
# Create HTML table without JavaScript sorting
html = '''
<style>
table {
width: 100%;
border-collapse: collapse;
}
th, td {
border: 1px solid #ddd;
padding: 8px;
text-align: center;
}
th {
font-weight: bold;
}
.table-container {
padding-bottom: 20px;
}
</style>
'''
html += '<div class="table-container">'
html += '<table>'
html += '<thead><tr>'
for column in df.columns:
html += f'<th>{column}</th>'
html += '</tr></thead>'
html += '<tbody>'
for _, row in df.iterrows():
html += '<tr>'
for col in df.columns:
html += f'<td>{row[col]}</td>'
html += '</tr>'
html += '</tbody></table>'
html += '</div>'
return html
def create_html_table_benchmark(df, benchmarks):
# Create HTML table without JavaScript sorting
html = '''
<style>
table {
width: 100%;
border-collapse: collapse;
}
th, td {
border: 1px solid #ddd;
padding: 8px;
text-align: center;
}
th {
font-weight: bold;
}
.table-container {
padding-bottom: 20px;
}
</style>
'''
html += '<div class="table-container">'
html += '<table>'
html += '<thead><tr>'
for column in df.columns:
if column != "Reproduced_all":
html += f'<th>{column}</th>'
html += '</tr></thead>'
html += '<tbody>'
for _, row in df.iterrows():
html += '<tr>'
for column in df.columns:
if column == "Reproduced":
if row[column] == "-":
html += f'<td>{row[column]}</td>'
else:
html += f'<td><details><summary>{row[column]}</summary>{"<br>".join(map(str, row["Reproduced_all"]))}</details></td>'
elif column == "Reproduced_all":
continue
else:
html += f'<td>{row[column]}</td>'
html += '</tr>'
html += '</tbody></table>'
html += '</div>'
return html
def check_sanity(agent):
for benchmark in BENCHMARKS:
file_path = f"results/{agent}/{benchmark.lower()}.json"
if not os.path.exists(file_path):
continue
original_count = 0
with open(file_path) as f:
results = json.load(f)
for result in results:
if not all(key in result for key in ["agent_name", "benchmark", "original_or_reproduced", "score", "std_err", "benchmark_specific", "benchmark_tuned", "followed_evaluation_protocol", "reproducible", "comments", "study_id", "date_time"]):
return False
if result["agent_name"] != agent:
return False
if result["benchmark"] != benchmark:
return False
if result["original_or_reproduced"] == "Original":
original_count += 1
if original_count != 1:
return False
return True
def main():
st.set_page_config(page_title="WebAgent Leaderboard", layout="wide")
all_agents = os.listdir("results")
all_results = {}
for agent in all_agents:
if not check_sanity(agent):
st.error(f"Results for {agent} are not in the correct format.")
continue
agent_results = []
for benchmark in BENCHMARKS:
with open(f"results/{agent}/{benchmark.lower()}.json") as f:
agent_results.extend(json.load(f))
all_results[agent] = agent_results
st.title("π BrowserGym Leaderboard")
st.markdown("Leaderboard to evaluate LLMs, VLMs, and agents on web navigation tasks.")
# content = create_yall()
# tab1, tab2, tab3, tab4 = st.tabs(["π WebAgent Leaderboard", "WorkArena++-L2 Leaderboard", "WorkArena++-L3 Leaderboard", "π About"])
tabs = st.tabs(["π WebAgent Leaderboard",] + BENCHMARKS + ["π About"])
with tabs[0]:
# Leaderboard tab
def get_leaderboard_dict(results):
leaderboard_dict = []
for key, values in results.items():
result_dict = {"Agent": key}
for benchmark in BENCHMARKS:
if any(value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original" for value in values):
result_dict[benchmark] = [value["score"] for value in values if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original"][0]
else:
result_dict[benchmark] = "-"
leaderboard_dict.append(result_dict)
return leaderboard_dict
leaderboard_dict = get_leaderboard_dict(all_results)
# print (leaderboard_dict)
full_df = pd.DataFrame.from_dict(leaderboard_dict)
df = pd.DataFrame(columns=full_df.columns)
dfs_to_concat = []
dfs_to_concat.append(full_df)
# Concatenate the DataFrames
if dfs_to_concat:
df = pd.concat(dfs_to_concat, ignore_index=True)
# df['Average'] = sum(df[column] for column in BENCHMARKS)/len(BENCHMARKS)
# df['Average'] = df['Average'].round(2)
# Sort values
df = df.sort_values(by='WebArena', ascending=False)
# Add a search bar
search_query = st.text_input("Search agents", "", key="search_main")
# Filter the DataFrame based on the search query
if search_query:
df = df[df['Agent'].str.contains(search_query, case=False)]
# Display the filtered DataFrame or the entire leaderboard
def make_hyperlink(agent_name):
url = f"https://huggingface.co/spaces/meghsn/WebAgent-Leaderboard/blob/main/results/{agent_name}/README.md"
return f'<a href="{url}" target="_blank">{agent_name}</a>'
df['Agent'] = df['Agent'].apply(make_hyperlink)
# st.dataframe(
# df[['Agent'] + BENCHMARKS],
# use_container_width=True,
# column_config={benchmark: {'alignment': 'center'} for benchmark in BENCHMARKS},
# hide_index=True,
# # height=int(len(df) * 36.2),
# )
# st.markdown(df.to_html(escape=False, index=False), unsafe_allow_html=True)
html_table = create_html_table_main(df, BENCHMARKS)
# print (html_table)
st.markdown(html_table, unsafe_allow_html=True)
# components.html(html_table, height=600, scrolling=True)
if st.button("Export to CSV", key="export_main"):
# Export the DataFrame to CSV
csv_data = df.to_csv(index=False)
# Create a link to download the CSV file
st.download_button(
label="Download CSV",
data=csv_data,
file_name="leaderboard.csv",
key="download-csv",
help="Click to download the CSV file",
)
with tabs[-1]:
st.markdown('''
### Leaderboard to evaluate LLMs, VLMs, and agents on web navigation tasks.
''')
for i, benchmark in enumerate(BENCHMARKS, start=1):
with tabs[i]:
def get_benchmark_dict(results, benchmark):
benchmark_dict = []
for key, values in results.items():
result_dict = {"Agent": key}
flag = 0
for value in values:
if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Original":
result_dict["Score"] = value["score"]
result_dict["Benchmark Specific"] = value["benchmark_specific"]
result_dict["Benchmark Tuned"] = value["benchmark_tuned"]
result_dict["Followed Evaluation Protocol"] = value["followed_evaluation_protocol"]
result_dict["Reproducible"] = value["reproducible"]
result_dict["Comments"] = value["comments"]
result_dict["Study ID"] = value["study_id"]
result_dict["Date"] = value["date_time"]
result_dict["Reproduced"] = []
result_dict["Reproduced_all"] = []
flag = 1
if not flag:
result_dict["Score"] = "-"
result_dict["Benchmark Specific"] = "-"
result_dict["Benchmark Tuned"] = "-"
result_dict["Followed Evaluation Protocol"] = "-"
result_dict["Reproducible"] = "-"
result_dict["Comments"] = "-"
result_dict["Study ID"] = "-"
result_dict["Date"] = "-"
result_dict["Reproduced"] = []
result_dict["Reproduced_all"] = []
if value["benchmark"] == benchmark and value["original_or_reproduced"] == "Reproduced":
result_dict["Reproduced"].append(value["score"])
result_dict["Reproduced_all"].append(", ".join([str(value["score"]), str(value["date_time"])]))
if result_dict["Reproduced"]:
result_dict["Reproduced"] = str(min(result_dict["Reproduced"])) + " - " + str(max(result_dict["Reproduced"]))
else:
result_dict["Reproduced"] = "-"
benchmark_dict.append(result_dict)
return benchmark_dict
benchmark_dict = get_benchmark_dict(all_results, benchmark=benchmark)
# print (leaderboard_dict)
full_df = pd.DataFrame.from_dict(benchmark_dict)
df_ = pd.DataFrame(columns=full_df.columns)
dfs_to_concat = []
dfs_to_concat.append(full_df)
# Concatenate the DataFrames
if dfs_to_concat:
df_ = pd.concat(dfs_to_concat, ignore_index=True)
# st.markdown(f"<h2 id='{benchmark.lower()}'>{benchmark}</h2>", unsafe_allow_html=True)
# st.dataframe(
# df_,
# use_container_width=True,
# column_config={benchmark: {'alignment': 'center'}},
# hide_index=True,
# )
html_table = create_html_table_benchmark(df_, BENCHMARKS)
st.markdown(html_table, unsafe_allow_html=True)
if __name__ == "__main__":
main()
|