import spaces import gc import gradio as gr import numpy as np import os from pathlib import Path from diffusers import GGUFQuantizationConfig, HunyuanVideoPipeline, HunyuanVideoTransformer3DModel from diffusers.utils import export_to_video from huggingface_hub import snapshot_download import torch gc.collect() torch.cuda.empty_cache() torch.set_grad_enabled(False) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False model_id = "hunyuanvideo-community/HunyuanVideo" base_path = f"/home/user/app/{model_id}" os.makedirs(base_path, exist_ok=True) snapshot_download(repo_id=model_id, local_dir=base_path) ckp_path = Path(base_path) gguf_filename = "hunyuan-video-t2v-720p-Q4_0.gguf" transformer_path = f"https://huggingface.co/city96/HunyuanVideo-gguf/blob/main/{gguf_filename}" transformer = HunyuanVideoTransformer3DModel.from_single_file( transformer_path, quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16), torch_dtype=torch.bfloat16, ) transformer = transformer.to('cuda') pipe = HunyuanVideoPipeline.from_pretrained( ckp_path, transformer=transformer, torch_dtype=torch.float16 ) if pipe.text_encoder: pipe.text_encoder = pipe.text_encoder.to('cuda') pipe.text_encoder.eval() pipe.vae.enable_tiling() pipe.vae.enable_slicing() pipe.vae.eval() pipe.vae = pipe.vae.to("cuda") pipe = pipe.to("cuda") pipe.load_lora_weights( "sergidev/IllustrationTTV", weight_name="hunyuan_flat_color_v2.safetensors", adapter_name="hyvid_lora_adapter" ) pipe.set_adapters("hyvid_lora_adapter", 1.2) gc.collect() torch.cuda.empty_cache() MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU(duration=120) def generate( prompt, height, width, num_frames, num_inference_steps, seed_value, fps, progress=gr.Progress(track_tqdm=True) ): with torch.cuda.device(0): if seed_value == -1: seed_value = torch.randint(0, MAX_SEED, (1,)).item() generator = torch.Generator('cuda').manual_seed(seed_value) with torch.amp.autocast_mode.autocast('cuda', dtype=torch.bfloat16), torch.inference_mode(), torch.no_grad(): output = pipe( prompt=prompt, height=height, width=width, num_frames=num_frames, num_inference_steps=num_inference_steps, generator=generator, ).frames[0] output_path = "output.mp4" export_to_video(output, output_path, fps=fps) torch.cuda.empty_cache() gc.collect() return output_path def apply_preset(preset_name, *current_values): if preset_name == "Higher Resolution": return [608, 448, 24, 29, 12] elif preset_name == "More Frames": return [512, 320, 42, 27, 14] return current_values css = """ #col-container { margin: 0 auto; max-width: 850px; } .dark-theme { background-color: #1f1f1f; color: #ffffff; } .container { margin: 0 auto; padding: 20px; border-radius: 10px; background-color: #2d2d2d; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); } .title { text-align: center; margin-bottom: 1em; color: #ffffff; } .description { text-align: center; margin-bottom: 2em; color: #cccccc; font-size: 0.95em; line-height: 1.5; } .prompt-container { background-color: #363636; padding: 15px; border-radius: 8px; margin-bottom: 1em; width: 100%; } .prompt-textbox { min-height: 80px !important; } .preset-buttons { display: flex; gap: 10px; justify-content: center; margin-bottom: 1em; } .support-text { text-align: center; margin-top: 1em; color: #cccccc; font-size: 0.9em; } a { color: #00a7e1; text-decoration: none; } a:hover { text-decoration: underline; } """ with gr.Blocks(css=css, theme="dark") as demo: with gr.Column(elem_id="col-container"): gr.Markdown("# 🎬 Illustration TTV", elem_classes=["title"]) gr.Markdown( """Transform your text descriptions into illustrative videos using HunyuanVideo for free! This space uses the 'hunyuan flat color v2' LORA by Motimalu to generate better 2d animated sequences. Prompt only handles 77 tokens. If you find this useful, please consider giving the space a ❤️ and supporting me on [Ko-Fi](https://ko-fi.com/sergidev)!""", elem_classes=["description"] ) with gr.Column(elem_classes=["prompt-container"]): prompt = gr.Textbox( label="Prompt", placeholder="Enter your prompt here (Include the terms 'flat color, no lineart, blending' for 2d illustration)", show_label=False, elem_classes=["prompt-textbox"], lines=3 ) with gr.Row(): run_button = gr.Button("🎨 Generate", variant="primary", size="lg") with gr.Row(elem_classes=["preset-buttons"]): preset_high_res = gr.Button("📺 Higher Resolution Preset") preset_more_frames = gr.Button("🎞️ More Frames Preset") with gr.Row(): result = gr.Video(label="Generated Video") with gr.Accordion("⚙️ Advanced Settings", open=False): seed = gr.Slider( label="Seed (-1 for random)", minimum=-1, maximum=MAX_SEED, step=1, value=-1, ) with gr.Row(): height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=16, value=608, ) width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=16, value=448, ) with gr.Row(): num_frames = gr.Slider( label="Number of frames to generate", minimum=1.0, maximum=257.0, step=1, value=24, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=29, ) fps = gr.Slider( label="Frames per second", minimum=1, maximum=60, step=1, value=12, ) # Event handling run_button.click( fn=generate, inputs=[prompt, height, width, num_frames, num_inference_steps, seed, fps], outputs=[result], ) # Preset button handlers preset_high_res.click( fn=lambda: apply_preset("Higher Resolution"), outputs=[height, width, num_frames, num_inference_steps, fps] ) preset_more_frames.click( fn=lambda: apply_preset("More Frames"), outputs=[height, width, num_frames, num_inference_steps, fps] )