File size: 7,751 Bytes
2dd154f
 
bd113ad
2dd154f
 
 
 
 
 
bd113ad
 
2dd154f
 
 
 
 
 
bd113ad
2dd154f
 
 
 
 
bd113ad
2dd154f
 
 
 
 
 
 
 
 
bd113ad
2dd154f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd113ad
 
2dd154f
 
 
 
 
 
 
 
bd113ad
2dd154f
 
bd113ad
2dd154f
 
 
bd113ad
2dd154f
 
bd113ad
2dd154f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd113ad
2dd154f
 
 
bd113ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import spaces
import gc
import gradio as gr
import numpy as np
import os
from pathlib import Path
from diffusers import GGUFQuantizationConfig, HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
from diffusers.utils import export_to_video
from huggingface_hub import snapshot_download
import torch

# Configuration
gc.collect()
torch.cuda.empty_cache()
torch.set_grad_enabled(False)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

# Load base model
model_id = "hunyuanvideo-community/HunyuanVideo"
base_path = f"/home/user/app/{model_id}"
os.makedirs(base_path, exist_ok=True)
snapshot_download(repo_id=model_id, local_dir=base_path)

# Load transformer
ckp_path = Path(base_path)
gguf_filename = "hunyuan-video-t2v-720p-Q4_0.gguf"
transformer_path = f"https://huggingface.co/city96/HunyuanVideo-gguf/blob/main/{gguf_filename}"
transformer = HunyuanVideoTransformer3DModel.from_single_file(
    transformer_path,
    quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
    torch_dtype=torch.bfloat16,
).to('cuda')

# Initialize pipeline
pipe = HunyuanVideoPipeline.from_pretrained(
    ckp_path,
    transformer=transformer,
    torch_dtype=torch.float16
).to("cuda")

# Configure VAE
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
pipe.vae.eval()

# Load multiple LoRA adapters
pipe.load_lora_weights(
    "Sergidev/TTV4ME",  # Private repository
    weight_name="stripe_v2.safetensors",
    adapter_name="hunyuanvideo-lora",
    token=os.environ.get("HF_TOKEN")  # Access token from Space secrets
)

pipe.load_lora_weights(
    "Sergidev/TTV4ME",  # Private repository
    weight_name="Top_Off.safetensors",
    token=os.environ.get("HF_TOKEN")  # Access token from Space secrets
)

pipe.load_lora_weights(
    "sergidev/IllustrationTTV",
    weight_name="hunyuan_flat_color_v2.safetensors",
    adapter_name="hyvid_lora_adapter"
)

# Set combined adapter weights
pipe.set_adapters(["hunyuanvideo-lora", "hyvid_lora_adapter"], [0.9, 0.8])

# Memory cleanup
gc.collect()
torch.cuda.empty_cache()

# Remaining code unchanged...
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU(duration=300)
def generate(
    prompt,
    height,
    width,
    num_frames,
    num_inference_steps,
    seed_value,
    fps,
    progress=gr.Progress(track_tqdm=True)
):
    with torch.cuda.device(0):
        if seed_value == -1:
            seed_value = torch.randint(0, MAX_SEED, (1,)).item()
        generator = torch.Generator('cuda').manual_seed(seed_value)

        with torch.amp.autocast_mode.autocast('cuda', dtype=torch.bfloat16), torch.inference_mode(), torch.no_grad():
            output = pipe(
                prompt=prompt,
                height=height,
                width=width,
                num_frames=num_frames,
                num_inference_steps=num_inference_steps,
                generator=generator,
            ).frames[0]

        output_path = "output.mp4"
        export_to_video(output, output_path, fps=fps)
        torch.cuda.empty_cache()
    gc.collect()
    return output_path

def apply_preset(preset_name, *current_values):
    if preset_name == "Higher Resolution":
        return [608, 448, 24, 29, 12]
    elif preset_name == "More Frames":
        return [512, 320, 42, 27, 14]
    return current_values

css = """
#col-container {
    margin: 0 auto;
    max-width: 850px;
}

.dark-theme {
    background-color: #1f1f1f;
    color: #ffffff;
}

.container {
    margin: 0 auto;
    padding: 20px;
    border-radius: 10px;
    background-color: #2d2d2d;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}

.title {
    text-align: center;
    margin-bottom: 1em;
    color: #ffffff;
}

.description {
    text-align: center;
    margin-bottom: 2em;
    color: #cccccc;
    font-size: 0.95em;
    line-height: 1.5;
}

.prompt-container {
    background-color: #363636;
    padding: 15px;
    border-radius: 8px;
    margin-bottom: 1em;
    width: 100%;
}

.prompt-textbox {
    min-height: 80px !important;
}

.preset-buttons {
    display: flex;
    gap: 10px;
    justify-content: center;
    margin-bottom: 1em;
}

.support-text {
    text-align: center;
    margin-top: 1em;
    color: #cccccc;
    font-size: 0.9em;
}

a {
    color: #00a7e1;
    text-decoration: none;
}

a:hover {
    text-decoration: underline;
}
"""

with gr.Blocks(css=css, theme="dark") as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# 🎬 Anime TTV", elem_classes=["title"])
        gr.Markdown(
            """Duplicate of Illustration TTV but for Anime. May be unpredictable. THIS IS A PRO VERSION: you may need an account. as the generation duration is 300.
            This space uses the 'hunyuan flat color v2' LORA by Motimalu to generate better 2d animated sequences. Prompt only handles 77 tokens.

            If you find this useful, please consider giving the space a ❤️ and supporting me on [Ko-Fi](https://ko-fi.com/sergidev)!""",
            elem_classes=["description"]
        )

        with gr.Column(elem_classes=["prompt-container"]):
            prompt = gr.Textbox(
                label="Prompt",
                placeholder="Enter your prompt here (Include the terms 'flat color, no lineart, blending' for 2d illustration)",
                show_label=False,
                elem_classes=["prompt-textbox"],
                lines=3
            )

        with gr.Row():
            run_button = gr.Button("🎨 Generate", variant="primary", size="lg")

        with gr.Row(elem_classes=["preset-buttons"]):
            preset_high_res = gr.Button("📺 Higher Resolution Preset")
            preset_more_frames = gr.Button("🎞️ More Frames Preset")

        with gr.Row():
            result = gr.Video(label="Generated Video")

        with gr.Accordion("⚙️ Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed (-1 for random)",
                minimum=-1,
                maximum=MAX_SEED,
                step=1,
                value=-1,
            )
            with gr.Row():
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=16,
                    value=608,
                )
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=16,
                    value=448,
                )
            with gr.Row():
                num_frames = gr.Slider(
                    label="Number of frames to generate",
                    minimum=1.0,
                    maximum=257.0,
                    step=1,
                    value=24,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=29,
                )
            fps = gr.Slider(
                label="Frames per second",
                minimum=1,
                maximum=60,
                step=1,
                value=12,
            )

    # Event handling
    run_button.click(
        fn=generate,
        inputs=[prompt, height, width, num_frames, num_inference_steps, seed, fps],
        outputs=[result],
    )

    # Preset button handlers
    preset_high_res.click(
        fn=lambda: apply_preset("Higher Resolution"),
        outputs=[height, width, num_frames, num_inference_steps, fps]
    )

    preset_more_frames.click(
        fn=lambda: apply_preset("More Frames"),
        outputs=[height, width, num_frames, num_inference_steps, fps]
    )