import os import gc import random import gradio as gr import numpy as np import torch import json import spaces import config import utils import logging from PIL import Image, PngImagePlugin from datetime import datetime from diffusers.models import AutoencoderKL from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) DESCRIPTION = "PonyDiffusion V6 XL" if not torch.cuda.is_available(): DESCRIPTION += "\n
Running on CPU 🥶 This demo does not work on CPU.
" IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1" HF_TOKEN = os.getenv("HF_TOKEN") CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512")) MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1" OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs") MODEL = os.getenv( "MODEL", "https://huggingface.co/AstraliteHeart/pony-diffusion-v6/blob/main/v6.safetensors", ) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def load_pipeline(model_name): vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, ) pipeline = ( StableDiffusionXLPipeline.from_single_file if MODEL.endswith(".safetensors") else StableDiffusionXLPipeline.from_pretrained ) pipe = pipeline( model_name, vae=vae, torch_dtype=torch.float16, custom_pipeline="lpw_stable_diffusion_xl", use_safetensors=True, add_watermarker=False, use_auth_token=HF_TOKEN, variant="fp16", ) pipe.to(device) return pipe def parse_json_parameters(json_str): try: params = json.loads(json_str) return params except json.JSONDecodeError: return None def apply_json_parameters(json_str): params = parse_json_parameters(json_str) if params: return ( params.get("prompt", ""), params.get("negative_prompt", ""), params.get("seed", 0), params.get("width", 1024), params.get("height", 1024), params.get("guidance_scale", 7.0), params.get("num_inference_steps", 30), params.get("sampler", "DPM++ 2M SDE Karras"), params.get("aspect_ratio", "1024 x 1024"), params.get("use_upscaler", False), params.get("upscaler_strength", 0.55), params.get("upscale_by", 1.5), ) return [gr.update()] * 12 @spaces.GPU def generate( prompt: str, negative_prompt: str = "", seed: int = 0, custom_width: int = 1024, custom_height: int = 1024, guidance_scale: float = 7.0, num_inference_steps: int = 30, sampler: str = "DPM++ 2M SDE Karras", aspect_ratio_selector: str = "1024 x 1024", use_upscaler: bool = False, upscaler_strength: float = 0.55, upscale_by: float = 1.5, progress=gr.Progress(track_tqdm=True), ) -> Image: generator = utils.seed_everything(seed) width, height = utils.aspect_ratio_handler( aspect_ratio_selector, custom_width, custom_height, ) width, height = utils.preprocess_image_dimensions(width, height) backup_scheduler = pipe.scheduler pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler) if use_upscaler: upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components) metadata = { "prompt": prompt, "negative_prompt": negative_prompt, "resolution": f"{width} x {height}", "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps, "seed": seed, "sampler": sampler, } if use_upscaler: new_width = int(width * upscale_by) new_height = int(height * upscale_by) metadata["use_upscaler"] = { "upscale_method": "nearest-exact", "upscaler_strength": upscaler_strength, "upscale_by": upscale_by, "new_resolution": f"{new_width} x {new_height}", } else: metadata["use_upscaler"] = None logger.info(json.dumps(metadata, indent=4)) try: if use_upscaler: latents = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, output_type="latent", ).images upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by) images = upscaler_pipe( prompt=prompt, negative_prompt=negative_prompt, image=upscaled_latents, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, strength=upscaler_strength, generator=generator, output_type="pil", ).images else: images = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, output_type="pil", ).images if images and IS_COLAB: for image in images: filepath = utils.save_image(image, metadata, OUTPUT_DIR) logger.info(f"Image saved as {filepath} with metadata") # Update history after generation history = gr.get_state("history") or [] history.insert(0, {"prompt": prompt, "image": images[0], "metadata": metadata}) gr.set_state("history", history[:10]) # Keep only the last 10 entries return images, metadata, gr.update(choices=[h["prompt"] for h in history]) except Exception as e: logger.exception(f"An error occurred: {e}") raise finally: if use_upscaler: del upscaler_pipe pipe.scheduler = backup_scheduler utils.free_memory() def get_random_prompt(): anime_characters = [ "Naruto Uzumaki", "Monkey D. Luffy", "Goku", "Eren Yeager", "Light Yagami", "Lelouch Lamperouge", "Edward Elric", "Levi Ackerman", "Spike Spiegel", "Sakura Haruno", "Mikasa Ackerman", "Asuka Langley Soryu", "Rem", "Megumin", "Violet Evergarden" ] styles = ["pixel art", "stylized anime", "digital art", "watercolor", "sketch"] scores = ["score_9", "score_8_up", "score_7_up"] character = random.choice(anime_characters) style = random.choice(styles) score = ", ".join(random.sample(scores, k=3)) return f"{score}, {character}, {style}, show accurate" if torch.cuda.is_available(): pipe = load_pipeline(MODEL) logger.info("Loaded on Device!") else: pipe = None with gr.Blocks(css="style.css") as demo: title = gr.HTML( f"""