import os import gc import random import gradio as gr import numpy as np import torch import json import spaces import config import utils import logging from PIL import Image, PngImagePlugin from datetime import datetime from diffusers.models import AutoencoderKL from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline # ... (keep all the imports and initial setup) # ... (keep all the functions like load_pipeline, parse_json_parameters, apply_json_parameters, generate, get_random_prompt) if torch.cuda.is_available(): pipe = load_pipeline(MODEL) logger.info("Loaded on Device!") else: pipe = None # Define the JavaScript code as a string js_code = """ """ with gr.Blocks(css="style.css") as demo: gr.HTML(js_code) # Add the JavaScript code to the interface title = gr.HTML( f"""

{DESCRIPTION}

""", elem_id="title", ) gr.Markdown( f"""Gradio demo for [Pony Diffusion V6](https://civitai.com/models/257749/pony-diffusion-v6-xl/)""", elem_id="subtitle", ) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", ) with gr.Group(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=5, placeholder="Enter your prompt", container=False, ) run_button = gr.Button( "Generate", variant="primary", scale=0 ) result = gr.Gallery( label="Result", columns=1, preview=True, show_label=False ) with gr.Accordion(label="Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative Prompt", max_lines=5, placeholder="Enter a negative prompt", value="" ) aspect_ratio_selector = gr.Radio( label="Aspect Ratio", choices=config.aspect_ratios, value="1024 x 1024", container=True, ) with gr.Group(visible=False) as custom_resolution: with gr.Row(): custom_width = gr.Slider( label="Width", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=8, value=1024, ) custom_height = gr.Slider( label="Height", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=8, value=1024, ) use_upscaler = gr.Checkbox(label="Use Upscaler", value=False) with gr.Row() as upscaler_row: upscaler_strength = gr.Slider( label="Strength", minimum=0, maximum=1, step=0.05, value=0.55, visible=False, ) upscale_by = gr.Slider( label="Upscale by", minimum=1, maximum=1.5, step=0.1, value=1.5, visible=False, ) sampler = gr.Dropdown( label="Sampler", choices=config.sampler_list, interactive=True, value="DPM++ 2M SDE Karras", ) with gr.Row(): seed = gr.Slider( label="Seed", minimum=0, maximum=utils.MAX_SEED, step=1, value=0 ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Group(): with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=1, maximum=12, step=0.1, value=7.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) with gr.Accordion(label="JSON Parameters", open=False): json_input = gr.TextArea(label="Input JSON parameters") apply_json_button = gr.Button("Apply JSON Parameters") with gr.Row(): clear_button = gr.Button("Clear All") random_prompt_button = gr.Button("Random Prompt") history_dropdown = gr.Dropdown(label="Generation History", choices=[], interactive=True, elem_id="history-dropdown") with gr.Accordion(label="Generation Parameters", open=False): gr_metadata = gr.JSON(label="Metadata", show_label=False) gr.Examples( examples=config.examples, inputs=prompt, outputs=[result, gr_metadata], fn=lambda *args, **kwargs: generate(*args, use_upscaler=True, **kwargs), cache_examples=CACHE_EXAMPLES, ) use_upscaler.change( fn=lambda x: [gr.update(visible=x), gr.update(visible=x)], inputs=use_upscaler, outputs=[upscaler_strength, upscale_by], queue=False, api_name=False, ) aspect_ratio_selector.change( fn=lambda x: gr.update(visible=x == "Custom"), inputs=aspect_ratio_selector, outputs=custom_resolution, queue=False, api_name=False, ) inputs = [ prompt, negative_prompt, seed, custom_width, custom_height, guidance_scale, num_inference_steps, sampler, aspect_ratio_selector, use_upscaler, upscaler_strength, upscale_by, ] prompt.submit( fn=utils.randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=inputs, outputs=[result, gr_metadata, history_dropdown], api_name="run", ) negative_prompt.submit( fn=utils.randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=inputs, outputs=[result, gr_metadata, history_dropdown], api_name=False, ) run_button.click( fn=utils.randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=inputs, outputs=[result, gr_metadata, history_dropdown], api_name=False, ) apply_json_button.click( fn=apply_json_parameters, inputs=json_input, outputs=[prompt, negative_prompt, seed, custom_width, custom_height, guidance_scale, num_inference_steps, sampler, aspect_ratio_selector, use_upscaler, upscaler_strength, upscale_by] ) clear_button.click( fn=lambda: (gr.update(value=""), gr.update(value=""), gr.update(value=0), gr.update(value=1024), gr.update(value=1024), gr.update(value=7.0), gr.update(value=30), gr.update(value="DPM++ 2M SDE Karras"), gr.update(value="1024 x 1024"), gr.update(value=False), gr.update(value=0.55), gr.update(value=1.5)), inputs=[], outputs=[prompt, negative_prompt, seed, custom_width, custom_height, guidance_scale, num_inference_steps, sampler, aspect_ratio_selector, use_upscaler, upscaler_strength, upscale_by] ) random_prompt_button.click( fn=get_random_prompt, inputs=[], outputs=prompt ) history_dropdown.change( fn=lambda x: gr.update(value=x), inputs=history_dropdown, outputs=prompt ) demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)