File size: 6,626 Bytes
827d113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3a6f96
827d113
 
 
 
 
 
 
 
 
 
 
a3a6f96
 
827d113
 
a3a6f96
827d113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3a6f96
827d113
 
a3a6f96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
827d113
 
 
 
 
 
 
 
 
a3a6f96
 
 
 
 
 
 
 
 
 
 
 
827d113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3a6f96
 
 
 
827d113
a3a6f96
827d113
 
 
a3a6f96
827d113
 
 
a3a6f96
827d113
 
 
a3a6f96
 
827d113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3a6f96
827d113
 
 
 
 
 
 
 
 
 
 
a3a6f96
827d113
 
 
 
 
 
 
 
 
 
 
a3a6f96
827d113
 
a3a6f96
827d113
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import gc
import gradio as gr
import numpy as np
import torch
import json
import spaces
import config
import utils
import logging
from PIL import Image, PngImagePlugin
from datetime import datetime
from diffusers.models import AutoencoderKL
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

DESCRIPTION = "PonyDiffusion V6 XL"
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>"
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
HF_TOKEN = os.getenv("HF_TOKEN")
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512"))
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")
THUMBNAIL_SIZE = (128, 128)  # Size for thumbnails

MODEL = os.getenv(
    "MODEL",
    "https://huggingface.co/AstraliteHeart/pony-diffusion-v6/blob/main/v6.safetensors",
)

torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Store the generation history
generation_history = []

def load_pipeline(model_name):
    # ... (rest of the function remains the same)

@spaces.GPU
def generate(
    prompt: str,
    negative_prompt: str = "",
    seed: int = 0,
    custom_width: int = 1024,
    custom_height: int = 1024,
    guidance_scale: float = 7.0,
    num_inference_steps: int = 30,
    sampler: str = "DPM++ 2M SDE Karras",
    aspect_ratio_selector: str = "1024 x 1024",
    use_upscaler: bool = False,
    upscaler_strength: float = 0.55,
    upscale_by: float = 1.5,
    progress=gr.Progress(track_tqdm=True),
) -> Image:
    # ... (rest of the function remains the same)

    try:
        # ... (existing code for image generation)

        if images:
            # Create thumbnail
            thumbnail = images[0].copy()
            thumbnail.thumbnail(THUMBNAIL_SIZE)
            
            # Add to generation history
            generation_history.append({
                "prompt": prompt,
                "thumbnail": thumbnail,
                "metadata": metadata
            })

            if IS_COLAB:
                for image in images:
                    filepath = utils.save_image(image, metadata, OUTPUT_DIR)
                    logger.info(f"Image saved as {filepath} with metadata")

        return images, metadata, update_history()
    except Exception as e:
        logger.exception(f"An error occurred: {e}")
        raise
    finally:
        if use_upscaler:
            del upscaler_pipe
        pipe.scheduler = backup_scheduler
        utils.free_memory()

def update_history():
    history_html = "<div style='display: flex; flex-wrap: wrap;'>"
    for item in reversed(generation_history[-10:]):  # Show last 10 entries
        thumbnail_path = f"data:image/png;base64,{utils.image_to_base64(item['thumbnail'])}"
        history_html += f"""
        <div style='margin: 5px; text-align: center;'>
            <img src='{thumbnail_path}' style='width: 100px; height: 100px; object-fit: cover;'>
            <p style='font-size: 12px; margin: 5px 0;'>{item['prompt'][:50]}...</p>
        </div>
        """
    history_html += "</div>"
    return history_html

if torch.cuda.is_available():
    pipe = load_pipeline(MODEL)
    logger.info("Loaded on Device!")
else:
    pipe = None

with gr.Blocks(css="style.css") as demo:
    title = gr.HTML(
        f"""<h1><span>{DESCRIPTION}</span></h1>""",
        elem_id="title",
    )
    gr.Markdown(
        f"""Gradio demo for ([Pony Diffusion V6]https://civitai.com/models/257749/pony-diffusion-v6-xl/)""",
        elem_id="subtitle",
    )
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=5,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button(
                "Generate", 
                variant="primary", 
                scale=0
            )
        result = gr.Gallery(
            label="Result", 
            columns=1, 
            preview=True, 
            show_label=False
        )
    
    # Add the history display
    history_display = gr.HTML(label="Generation History")

    with gr.Accordion(label="Advanced Settings", open=False):
        # ... (rest of the UI components remain the same)

    with gr.Accordion(label="Generation Parameters", open=False):
        gr_metadata = gr.JSON(label="Metadata", show_label=False)

    gr.Examples(
        examples=config.examples,
        inputs=prompt,
        outputs=[result, gr_metadata, history_display],
        fn=lambda *args, **kwargs: generate(*args, use_upscaler=True, **kwargs),
        cache_examples=CACHE_EXAMPLES,
    )

    # ... (rest of the event handlers remain the same)

    inputs = [
        prompt,
        negative_prompt,
        seed,
        custom_width,
        custom_height,
        guidance_scale,
        num_inference_steps,
        sampler,
        aspect_ratio_selector,
        use_upscaler,
        upscaler_strength,
        upscale_by,
    ]

    prompt.submit(
        fn=utils.randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=inputs,
        outputs=[result, gr_metadata, history_display],
        api_name="run",
    )
    negative_prompt.submit(
        fn=utils.randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=inputs,
        outputs=[result, gr_metadata, history_display],
        api_name=False,
    )
    run_button.click(
        fn=utils.randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=inputs,
        outputs=[result, gr_metadata, history_display],
        api_name=False,
    )

demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)