import gradio as gr import spaces import torch from transformers import AutoTokenizer, AutoModel from sklearn.decomposition import PCA import plotly.graph_objects as go from huggingface_hub import HfApi from huggingface_hub import hf_hub_download import os import sys model_name = "sentence-transformers/all-MiniLM-L6-v2" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) @spaces.GPU def get_embedding(text): inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512) with torch.no_grad(): outputs = model(**inputs) return outputs.last_hidden_state.mean(dim=1).squeeze().numpy() def compress_to_3d(embedding): pca = PCA(n_components=3) return pca.fit_transform(embedding.reshape(1, -1))[0] @spaces.GPU def compare_embeddings(text1, text2): emb1 = get_embedding(text1) emb2 = get_embedding(text2) emb1_3d = compress_to_3d(emb1) emb2_3d = compress_to_3d(emb2) fig = go.Figure(data=[ go.Scatter3d(x=[0, emb1_3d[0]], y=[0, emb1_3d[1]], z=[0, emb1_3d[2]], mode='lines+markers', name='Text 1'), go.Scatter3d(x=[0, emb2_3d[0]], y=[0, emb2_3d[1]], z=[0, emb2_3d[2]], mode='lines+markers', name='Text 2') ]) fig.update_layout(scene=dict(xaxis_title='X', yaxis_title='Y', zaxis_title='Z')) return fig iface = gr.Interface( fn=compare_embeddings, inputs=[ gr.Textbox(label="Text 1"), gr.Textbox(label="Text 2") ], outputs=gr.Plot(), title="3D Embedding Comparison", description="Compare the embeddings of two strings visualized in 3D space." ) iface.launch() demo.launch()