import gradio as gr import spaces import torch from transformers import AutoTokenizer, AutoModel import plotly.graph_objects as go import numpy as np model_name = "mistralai/Mistral-7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_name) model = None # Set pad token to eos token if not defined if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token @spaces.GPU def get_embedding(text): global model if model is None: model = AutoModel.from_pretrained(model_name).cuda() model.resize_token_embeddings(len(tokenizer)) inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512).to('cuda') with torch.no_grad(): outputs = model(**inputs) return outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy() def reduce_to_3d(embedding): return embedding[:3] @spaces.GPU def compare_embeddings(text_input): texts = text_input.split('\n') embeddings = [get_embedding(text) for text in texts] embeddings_3d = [reduce_to_3d(emb) for emb in embeddings] fig = go.Figure() # Add origin point (black) fig.add_trace(go.Scatter3d(x=[0], y=[0], z=[0], mode='markers', name='Origin', marker=dict(size=5, color='black'))) # Add lines and points for each text embedding colors = ['red', 'blue', 'green', 'purple', 'orange', 'cyan', 'magenta', 'yellow'] for i, emb in enumerate(embeddings_3d): color = colors[i % len(colors)] fig.add_trace(go.Scatter3d(x=[0, emb[0]], y=[0, emb[1]], z=[0, emb[2]], mode='lines+markers', name=f'Text {i+1}', line=dict(color=color), marker=dict(color=color))) fig.update_layout(scene=dict(xaxis_title='X', yaxis_title='Y', zaxis_title='Z')) return fig iface = gr.Interface( fn=compare_embeddings, inputs=[ gr.Textbox(label="Input Texts", lines=5, placeholder="Enter multiple texts, each on a new line") ], outputs=gr.Plot(), title="3D Embedding Comparison", description="Compare the embeddings of multiple strings visualized in 3D space using Mistral 7B." ) iface.launch()