SerdarHelli's picture
Update app.py
f78e14f
raw
history blame
2.06 kB
import streamlit as st
import tensorflow as tf
from PIL import Image
import numpy as np
import cv2
model=tf.keras.models.load_model("dental_xray_seg.h5")
st.header("Segmentation of Teeth in Panoramic X-ray Image Using UNet")
link='Check Out Our Github Repo ! [link](https://github.com/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net)'
st.markdown(link,unsafe_allow_html=True)
def load_image(image_file):
img = Image.open(image_file)
return img
def convert_one_channel(img):
#some images have 3 channels , although they are grayscale image
if len(img.shape)>2:
img=img[:,:,0]
return img
else:
return img
st.subheader("Upload Dental Panoramic X-ray Image Image")
image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])
if image_file is not None:
file_details = {"filename":image_file.name, "filetype":image_file.type,
"filesize":image_file.size}
st.write(file_details)
img=load_image(image_file)
st.text("Making A Prediction ....")
st.image(img,width=850)
img=np.asarray(img)
img_cv=convert_one_channel(img)
img_cv=cv2.resize(img_cv,(512,512), interpolation=cv2.INTER_LANCZOS4)
img_cv=np.float32(img_cv/255)
img_cv=np.reshape(img_cv,(1,512,512,1))
prediction=model.predict(img_cv)
predicted=prediction[0]
predicted = cv2.resize(predicted, (img.shape[1],img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
mask=np.uint8(predicted*255)#
_, mask = cv2.threshold(mask, thresh=255/2, maxval=255, type=cv2.THRESH_BINARY+cv2.THRESH_OTSU)
cnts,hieararch=cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
output = cv2.drawContours(convert_one_channel(img), cnts, -1, (255, 0, 0) , 2)
if output is not None :
st.subheader("Predicted Image")
st.image(output,width=850)
st.text("DONE ! ....")