Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -21,11 +21,18 @@ class Net(keras.Model):
|
|
21 |
self.fc2 = keras.layers.Dense(10, activation='relu')
|
22 |
self.fc3 = keras.layers.Dense(2)
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def call(self, x):
|
25 |
x = self.fc1(x)
|
26 |
x = self.fc2(x)
|
27 |
x = self.fc3(x)
|
28 |
return x
|
|
|
29 |
# Define a genetic algorithm class
|
30 |
class GeneticAlgorithm:
|
31 |
def __init__(self, population_size, task_id):
|
@@ -38,38 +45,36 @@ class GeneticAlgorithm:
|
|
38 |
fitness = []
|
39 |
for i, net in enumerate(self.population):
|
40 |
net.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
|
|
41 |
net.fit(X_train, y_train, epochs=10, verbose=0)
|
42 |
loss, accuracy = net.evaluate(X_test, y_test, verbose=0)
|
43 |
fitness.append(accuracy)
|
44 |
if len(fitness) > 0:
|
45 |
-
self.population = [self.population[i] for i in np.argsort(fitness)[-
|
46 |
|
47 |
def crossover(self):
|
48 |
offspring = []
|
49 |
-
|
|
|
50 |
parent1, parent2 = random.sample(self.population, 2)
|
51 |
child = Net()
|
52 |
-
child.
|
|
|
|
|
53 |
|
54 |
-
#
|
55 |
parent1_weights = parent1.get_weights()
|
56 |
parent2_weights = parent2.get_weights()
|
57 |
-
|
58 |
-
|
59 |
-
child_weights = []
|
60 |
-
for w1, w2 in zip(parent1_weights, parent2_weights):
|
61 |
-
child_weights.append((w1 + w2) / 2)
|
62 |
-
|
63 |
-
# Set the weights of the child network
|
64 |
-
child.fc1.set_weights(child_weights[:2])
|
65 |
-
child.fc2.set_weights(child_weights[2:4])
|
66 |
-
child.fc3.set_weights(child_weights[4:])
|
67 |
|
68 |
offspring.append(child)
|
69 |
self.population += offspring
|
70 |
|
71 |
def mutation(self):
|
|
|
72 |
for net in self.population:
|
|
|
73 |
if random.random() < 0.1:
|
74 |
weights = net.get_weights()
|
75 |
new_weights = [np.array(w) + np.random.randn(*w.shape) * 0.1 for w in weights]
|
@@ -87,9 +92,7 @@ num_generations = st.sidebar.slider("Number of generations", 1, 100, 10)
|
|
87 |
gas = None
|
88 |
|
89 |
# Run the evolution
|
90 |
-
gas = []
|
91 |
if st.button("Run evolution"):
|
92 |
-
gas = [GeneticAlgorithm(population_size, task_id) for task_id in range(num_tasks)]
|
93 |
gas = [GeneticAlgorithm(population_size, task_id) for task_id in range(num_tasks)]
|
94 |
for generation in range(num_generations):
|
95 |
for ga in gas:
|
@@ -98,47 +101,50 @@ if st.button("Run evolution"):
|
|
98 |
ga.mutation()
|
99 |
st.write(f"Generation {generation+1} complete")
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
for i in range(len(gas)):
|
118 |
-
for j in range(i+1, len(gas)):
|
119 |
-
ga1 = gas[i]
|
120 |
-
ga2 = gas[j]
|
121 |
-
population1 = ga1.population
|
122 |
-
population2 = ga2.population
|
123 |
-
num_trade = int(0.1 * population_size)
|
124 |
-
trade1 = random.sample(population1, num_trade)
|
125 |
-
trade2 = random.sample(population2, num_trade)
|
126 |
-
ga1.population = population1 + trade2
|
127 |
-
ga2.population = population2 + trade1
|
128 |
|
129 |
-
#
|
130 |
-
|
131 |
-
for
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
st.write(f"Final accuracy: {np.mean(final_accuracy)}")
|
143 |
-
st.write(f"Final accuracy after trading: {np.mean(final_accuracy_after_trade)}")
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
self.fc2 = keras.layers.Dense(10, activation='relu')
|
22 |
self.fc3 = keras.layers.Dense(2)
|
23 |
|
24 |
+
def build(self, input_shape):
|
25 |
+
self.fc1.build(input_shape)
|
26 |
+
self.fc2.build(self.fc1.output_shape)
|
27 |
+
self.fc3.build(self.fc2.output_shape)
|
28 |
+
self.built = True
|
29 |
+
|
30 |
def call(self, x):
|
31 |
x = self.fc1(x)
|
32 |
x = self.fc2(x)
|
33 |
x = self.fc3(x)
|
34 |
return x
|
35 |
+
|
36 |
# Define a genetic algorithm class
|
37 |
class GeneticAlgorithm:
|
38 |
def __init__(self, population_size, task_id):
|
|
|
45 |
fitness = []
|
46 |
for i, net in enumerate(self.population):
|
47 |
net.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
48 |
+
net.build(input_shape=(None, 10))
|
49 |
net.fit(X_train, y_train, epochs=10, verbose=0)
|
50 |
loss, accuracy = net.evaluate(X_test, y_test, verbose=0)
|
51 |
fitness.append(accuracy)
|
52 |
if len(fitness) > 0:
|
53 |
+
self.population = [self.population[i] for i in np.argsort(fitness)[-self.population_size//2:]]
|
54 |
|
55 |
def crossover(self):
|
56 |
offspring = []
|
57 |
+
X = np.random.rand(1, 10)
|
58 |
+
for _ in range(self.population_size//2):
|
59 |
parent1, parent2 = random.sample(self.population, 2)
|
60 |
child = Net()
|
61 |
+
child.build(input_shape=(None, 10))
|
62 |
+
parent1.build(input_shape=(None, 10))
|
63 |
+
parent2.build(input_shape=(None, 10))
|
64 |
|
65 |
+
# Average the weights of the two parents
|
66 |
parent1_weights = parent1.get_weights()
|
67 |
parent2_weights = parent2.get_weights()
|
68 |
+
child_weights = [(np.array(w1) + np.array(w2)) / 2 for w1, w2 in zip(parent1_weights, parent2_weights)]
|
69 |
+
child.set_weights(child_weights)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
offspring.append(child)
|
72 |
self.population += offspring
|
73 |
|
74 |
def mutation(self):
|
75 |
+
X = np.random.rand(1, 10)
|
76 |
for net in self.population:
|
77 |
+
net.build(input_shape=(None, 10))
|
78 |
if random.random() < 0.1:
|
79 |
weights = net.get_weights()
|
80 |
new_weights = [np.array(w) + np.random.randn(*w.shape) * 0.1 for w in weights]
|
|
|
92 |
gas = None
|
93 |
|
94 |
# Run the evolution
|
|
|
95 |
if st.button("Run evolution"):
|
|
|
96 |
gas = [GeneticAlgorithm(population_size, task_id) for task_id in range(num_tasks)]
|
97 |
for generation in range(num_generations):
|
98 |
for ga in gas:
|
|
|
101 |
ga.mutation()
|
102 |
st.write(f"Generation {generation+1} complete")
|
103 |
|
104 |
+
# Evaluate the final population
|
105 |
+
if gas is not None:
|
106 |
+
final_accuracy = []
|
107 |
+
for task_id, ga in enumerate(gas):
|
108 |
+
X_train, X_test, y_train, y_test = generate_dataset(task_id)
|
109 |
+
accuracy = []
|
110 |
+
for net in ga.population:
|
111 |
+
net.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
112 |
+
net.build(input_shape=(None, 10))
|
113 |
+
net.fit(X_train, y_train, epochs=10, verbose=0)
|
114 |
+
loss, acc = net.evaluate(X_test, y_test, verbose=0)
|
115 |
+
accuracy.append(acc)
|
116 |
+
if len(accuracy) > 0:
|
117 |
+
final_accuracy.append(np.mean(accuracy))
|
118 |
+
if len(final_accuracy) > 0:
|
119 |
+
st.write(f"Final accuracy: {np.mean(final_accuracy)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
# Trade populations between tasks
|
122 |
+
if gas is not None:
|
123 |
+
for i in range(len(gas)):
|
124 |
+
for j in range(i+1, len(gas)):
|
125 |
+
ga1 = gas[i]
|
126 |
+
ga2 = gas[j]
|
127 |
+
population1 = ga1.population
|
128 |
+
population2 = ga2.population
|
129 |
+
num_trade = int(0.1 * population_size)
|
130 |
+
trade1 = random.sample(population1, num_trade)
|
131 |
+
trade2 = random.sample(population2, num_trade)
|
132 |
+
ga1.population = population1 + trade2
|
133 |
+
ga2.population = population2 + trade1
|
|
|
|
|
134 |
|
135 |
+
# Evaluate the final population after trading
|
136 |
+
if gas is not None:
|
137 |
+
final_accuracy_after_trade = []
|
138 |
+
for task_id, ga in enumerate(gas):
|
139 |
+
X_train, X_test, y_train, y_test = generate_dataset(task_id)
|
140 |
+
accuracy = []
|
141 |
+
for net in ga.population:
|
142 |
+
net.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
143 |
+
net.build(input_shape=(None, 10))
|
144 |
+
net.fit(X_train, y_train, epochs=10, verbose=0)
|
145 |
+
loss, acc = net.evaluate(X_test, y_test, verbose=0)
|
146 |
+
accuracy.append(acc)
|
147 |
+
final_accuracy_after_trade.append(np.mean(accuracy))
|
148 |
+
if len(final_accuracy) > 0 and len(final_accuracy_after_trade) > 0:
|
149 |
+
st.write(f"Final accuracy: {np.mean(final_accuracy)}")
|
150 |
+
st.write(f"Final accuracy after trading: {np.mean(final_accuracy_after_trade)}")
|