File size: 5,441 Bytes
bd712f3
 
d7d4643
 
d7061cb
 
 
d7d4643
bd712f3
d7061cb
 
 
 
 
bd712f3
d7061cb
d7d4643
bd712f3
 
d7d4643
 
 
bd712f3
d7d4643
 
 
d7061cb
bd712f3
 
d7061cb
bd712f3
d683d92
bd712f3
d683d92
d7061cb
bd712f3
d683d92
c967d7f
 
35b5db1
 
 
 
 
 
 
 
bd712f3
ad9e704
e0651bb
eb95235
 
 
e0651bb
 
 
eb95235
 
e0651bb
 
eb95235
e0651bb
eb95235
 
 
bd712f3
 
e0651bb
fff55de
e0651bb
eb95235
e0651bb
eb95235
e0651bb
eb95235
bd712f3
d7061cb
bd712f3
 
 
 
d7061cb
 
bd712f3
d7061cb
 
d683d92
d7061cb
d683d92
 
d7061cb
 
 
bd712f3
d7061cb
 
d683d92
d7061cb
 
 
c1fdd60
d7d4643
 
 
 
35b5db1
d683d92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import streamlit as st
import numpy as np
import tensorflow as tf
from tensorflow import keras
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import random

# Define a function to generate a dataset
def generate_dataset(task_id):
    X, y = make_classification(n_samples=100, n_features=10, n_informative=5, n_redundant=3, n_repeated=2, random_state=task_id)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=task_id)
    return X_train, X_test, y_train, y_test

# Define a neural network class
class Net(keras.Model):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = keras.layers.Dense(20, activation='relu', input_shape=(10,))
        self.fc2 = keras.layers.Dense(10, activation='relu')
        self.fc3 = keras.layers.Dense(2)

    def call(self, x):
        x = self.fc1(x)
        x = self.fc2(x)
        x = self.fc3(x)
        return x

# Define a genetic algorithm class
class GeneticAlgorithm:
    def __init__(self, population_size, task_id):
        self.population_size = population_size
        self.task_id = task_id
        self.population = [Net() for _ in range(population_size)]

    def selection(self):
        X_train, X_test, y_train, y_test = generate_dataset(self.task_id)
        fitness = []
        for i, net in enumerate(self.population):
            net.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
            net.fit(X_train, y_train, epochs=10, verbose=0)
            loss, accuracy = net.evaluate(X_test, y_test, verbose=0)
            fitness.append(accuracy)
        if len(fitness) > 0:
            self.population = [self.population[i] for i in np.argsort(fitness)[-self.population_size//2:]]

    def crossover(self):
        offspring = []
        X = np.random.rand(1, 10)  # dummy input to build the layers
        for _ in range(self.population_size//2):
            parent1, parent2 = random.sample(self.population, 2)
            child = Net()
            child(X)  # build the layers
            parent1(X)  # build the layers
            parent2(X)  # build the layers
            
            # Average the weights of the two parents
            parent1_weights = parent1.get_weights()
            parent2_weights = parent2.get_weights()
            child_weights = [(np.array(w1) + np.array(w2)) / 2 for w1, w2 in zip(parent1_weights, parent2_weights)]
            child.set_weights(child_weights)
            
            offspring.append(child)
        self.population += offspring

    def mutation(self):
        X = np.random.rand(1, 10)  # dummy input to build the layers
        for net in self.population:
            net(X)  # build the layers
            if random.random() < 0.1:
                weights = net.get_weights()
                new_weights = [np.array(w) + np.random.randn(*w.shape) * 0.1 for w in weights]
                net.set_weights(new_weights)

# Streamlit app
st.title("Evolution of Sub-Models")

# Parameters
st.sidebar.header("Parameters")
population_size = st.sidebar.slider("Population size", 10, 100, 50)
num_tasks = st.sidebar.slider("Number of tasks", 1, 10, 5)
num_generations = st.sidebar.slider("Number of generations", 1, 100, 10)

# Run the evolution
if st.button("Run evolution"):
    gas = [GeneticAlgorithm(population_size, task_id) for task_id in range(num_tasks)]
    for generation in range(num_generations):
        for ga in gas:
            ga.selection()
            ga.crossover()
            ga.mutation()
        st.write(f"Generation {generation+1} complete")

    # Evaluate the final population
    final_accuracy = []
    for task_id, ga in enumerate(gas):
        X_train, X_test, y_train, y_test = generate_dataset(task_id)
        accuracy = []
        for net in ga.population:
            net.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
            net.fit(X_train, y_train, epochs=10, verbose=0)
            loss, acc = net.evaluate(X_test, y_test, verbose=0)
            accuracy.append(acc)
        final_accuracy.append(np.mean(accuracy))
    st.write(f"Final accuracy: {np.mean(final_accuracy)}")

    # Trade populations between tasks
    for i in range(num_tasks):
        for j in range(i+1, num_tasks):
            ga1 = gas[i]
            ga2 = gas[j]
            population1 = ga1.population
            population2 = ga2.population
            num_trade = int(0.1 * population_size)
            trade1 = random.sample(population1, num_trade)
            trade2 = random.sample(population2, num_trade)
            ga1.population = population1 + trade2
            ga2.population = population2 + trade1

    # Evaluate the final population after trading
    final_accuracy_after_trade = []
    for task_id, ga in enumerate(gas):
        X_train, X_test, y_train, y_test = generate_dataset(task_id)
        accuracy = []
        for net in ga.population:
            net.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
            net.fit(X_train, y_train, epochs=10, verbose=0)
            loss, acc = net.evaluate(X_test, y_test, verbose=0)
            accuracy.append(acc)
        final_accuracy_after_trade.append(np.mean(accuracy))
    st.write(f"Final accuracy after trading: {np.mean(final_accuracy_after_trade)}")