Spaces:
Sleeping
Sleeping
File size: 5,589 Bytes
bd712f3 d7d4643 d7061cb d7d4643 bd712f3 d7061cb bd712f3 d7061cb d7d4643 bd712f3 d7d4643 bd712f3 d7d4643 d7061cb bd712f3 d7061cb bd712f3 d683d92 bd712f3 d683d92 d7061cb bd712f3 d683d92 c967d7f 35b5db1 fb48a77 35b5db1 bd712f3 ad9e704 e0651bb eb95235 e0651bb eb95235 e0651bb eb95235 e0651bb eb95235 bd712f3 e0651bb fff55de e0651bb eb95235 e0651bb eb95235 e0651bb eb95235 bd712f3 d7061cb bd712f3 d7061cb bd712f3 d7061cb d683d92 d7061cb d683d92 d7061cb bd712f3 d7061cb d683d92 d7061cb c1fdd60 fb48a77 d7d4643 2987977 fb48a77 d683d92 2987977 fb48a77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import streamlit as st
import numpy as np
import tensorflow as tf
from tensorflow import keras
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import random
# Define a function to generate a dataset
def generate_dataset(task_id):
X, y = make_classification(n_samples=100, n_features=10, n_informative=5, n_redundant=3, n_repeated=2, random_state=task_id)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=task_id)
return X_train, X_test, y_train, y_test
# Define a neural network class
class Net(keras.Model):
def __init__(self):
super(Net, self).__init__()
self.fc1 = keras.layers.Dense(20, activation='relu', input_shape=(10,))
self.fc2 = keras.layers.Dense(10, activation='relu')
self.fc3 = keras.layers.Dense(2)
def call(self, x):
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
return x
# Define a genetic algorithm class
class GeneticAlgorithm:
def __init__(self, population_size, task_id):
self.population_size = population_size
self.task_id = task_id
self.population = [Net() for _ in range(population_size)]
def selection(self):
X_train, X_test, y_train, y_test = generate_dataset(self.task_id)
fitness = []
for i, net in enumerate(self.population):
net.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
net.build(input_shape=(None, 10)) # Compile the model before training
net.fit(X_train, y_train, epochs=10, verbose=0)
loss, accuracy = net.evaluate(X_test, y_test, verbose=0)
fitness.append(accuracy)
if len(fitness) > 0:
self.population = [self.population[i] for i in np.argsort(fitness)[-self.population_size//2:]]
def crossover(self):
offspring = []
X = np.random.rand(1, 10) # dummy input to build the layers
for _ in range(self.population_size//2):
parent1, parent2 = random.sample(self.population, 2)
child = Net()
child(X) # build the layers
parent1(X) # build the layers
parent2(X) # build the layers
# Average the weights of the two parents
parent1_weights = parent1.get_weights()
parent2_weights = parent2.get_weights()
child_weights = [(np.array(w1) + np.array(w2)) / 2 for w1, w2 in zip(parent1_weights, parent2_weights)]
child.set_weights(child_weights)
offspring.append(child)
self.population += offspring
def mutation(self):
X = np.random.rand(1, 10) # dummy input to build the layers
for net in self.population:
net(X) # build the layers
if random.random() < 0.1:
weights = net.get_weights()
new_weights = [np.array(w) + np.random.randn(*w.shape) * 0.1 for w in weights]
net.set_weights(new_weights)
# Streamlit app
st.title("Evolution of Sub-Models")
# Parameters
st.sidebar.header("Parameters")
population_size = st.sidebar.slider("Population size", 10, 100, 50)
num_tasks = st.sidebar.slider("Number of tasks", 1, 10, 5)
num_generations = st.sidebar.slider("Number of generations", 1, 100, 10)
# Run the evolution
if st.button("Run evolution"):
gas = [GeneticAlgorithm(population_size, task_id) for task_id in range(num_tasks)]
for generation in range(num_generations):
for ga in gas:
ga.selection()
ga.crossover()
ga.mutation()
st.write(f"Generation {generation+1} complete")
# Evaluate the final population
final_accuracy = []
for task_id, ga in enumerate(gas):
X_train, X_test, y_train, y_test = generate_dataset(task_id)
accuracy = []
for net in ga.population:
net.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
net.build(input_shape=(None, 10)) # Compile the model before training
net.fit(X_train, y_train, epochs=10, verbose=0)
loss, acc = net.evaluate(X_test, y_test, verbose=0)
accuracy.append(acc)
final_accuracy.append(np.mean(accuracy))
st.write(f"Final accuracy: {np.mean(final_accuracy)}")
# Trade populations between tasks
for i in range(num_tasks):
for j in range(i+1, num_tasks):
ga1 = gas[i]
ga2 = gas[j]
population1 = ga1.population
population2 = ga2.population
num_trade = int(0.1 * population_size)
trade1 = random.sample(population1, num_trade)
trade2 = random.sample(population2, num_trade)
ga1.population = population1 + trade2
ga2.population = population2 + trade1
# Evaluate the final population after trading
final_accuracy_after_trade = []
for task_id, ga in enumerate(gas):
X_train, X_test, y_train, y_test = generate_dataset(task_id)
accuracy = []
for net in ga.population:
net.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
net.build(input_shape=(None, 10)) # Compile the model before training
net.fit(X_train, y_train, epochs=10, verbose=0)
loss, acc = net.evaluate(X_test, y_test, verbose=0)
accuracy.append(acc)
final_accuracy_after_trade.append(np.mean(accuracy))
st.write(f"Final accuracy after trading: {np.mean(final_accuracy_after_trade)}")
|