Spaces:
Running
Running
import streamlit as st | |
import torch | |
from transformers import AutoTokenizer | |
from semviqa.ser.qatc_model import QATCForQuestionAnswering | |
from semviqa.tvc.model import ClaimModelForClassification | |
from semviqa.ser.ser_eval import extract_evidence_tfidf_qatc | |
from semviqa.tvc.tvc_eval import classify_claim | |
import io | |
# Load models with caching | |
def load_model(model_name, model_class, is_bc=False): | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = model_class.from_pretrained(model_name, num_labels=3 if not is_bc else 2) | |
model.eval() | |
return tokenizer, model | |
# Set up page configuration | |
st.set_page_config(page_title="SemViQA Demo", layout="wide") | |
# Custom CSS: fixed navigation, header, and adjusted height | |
st.markdown(""" | |
<style> | |
html, body { | |
height: 100%; | |
margin: 0; | |
overflow: hidden; | |
} | |
.main-container { | |
height: calc(100vh - 55px); | |
overflow-y: auto; | |
padding: 20px; | |
} | |
.big-title { | |
font-size: 36px; | |
font-weight: bold; | |
color: #4A90E2; | |
text-align: center; | |
margin-top: 20px; | |
position: sticky; | |
top: 0; | |
background-color: white; | |
z-index: 100; | |
padding: 10px 0; | |
} | |
.sub-title { | |
font-size: 20px; | |
color: #666; | |
text-align: center; | |
margin-bottom: 20px; | |
position: sticky; | |
top: 56px; | |
background-color: white; | |
z-index: 100; | |
padding-bottom: 10px; | |
} | |
.stButton>button { | |
background-color: #4CAF50; | |
color: white; | |
font-size: 16px; | |
width: 100%; | |
border-radius: 8px; | |
padding: 10px; | |
} | |
.stTextArea textarea { | |
font-size: 16px; | |
min-height: 120px; | |
} | |
.result-box { | |
background-color: #f9f9f9; | |
padding: 20px; | |
border-radius: 10px; | |
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1); | |
margin-top: 20px; | |
} | |
.verdict { | |
font-size: 24px; | |
font-weight: bold; | |
margin: 0; | |
display: flex; | |
align-items: center; | |
} | |
.verdict-icon { | |
margin-right: 10px; | |
} | |
/* Fixed sidebar */ | |
.css-1d391kg, .css-1cypcdb { | |
position: sticky; | |
top: 0; | |
height: calc(100vh - 55px); | |
overflow-y: auto; | |
} | |
/* Tab content area */ | |
.stTabs [data-baseweb="tab-panel"] { | |
height: calc(100vh - 150px); | |
overflow-y: auto; | |
} | |
/* Loading animation */ | |
.loading-animation { | |
text-align: center; | |
padding: 20px; | |
} | |
.loading-animation .dot { | |
display: inline-block; | |
width: 12px; | |
height: 12px; | |
border-radius: 50%; | |
background-color: #4A90E2; | |
margin: 0 5px; | |
animation: pulse 1.4s infinite ease-in-out; | |
} | |
.loading-animation .dot:nth-child(2) { | |
animation-delay: 0.2s; | |
} | |
.loading-animation .dot:nth-child(3) { | |
animation-delay: 0.4s; | |
} | |
@keyframes pulse { | |
0%, 100% { transform: scale(0.8); opacity: 0.5; } | |
50% { transform: scale(1.2); opacity: 1; } | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Main container with fixed height | |
with st.container(): | |
st.markdown("<p class='big-title'>SemViQA: Semantic QA Information Verification System for Vietnamese</p>", unsafe_allow_html=True) | |
st.markdown("<p class='sub-title'>Enter information to verify and context to check its accuracy</p>", unsafe_allow_html=True) | |
# Sidebar: Global Settings | |
with st.sidebar.expander("⚙️ Settings", expanded=True): | |
tfidf_threshold = st.slider("TF-IDF Threshold", 0.0, 1.0, 0.5, 0.01) | |
length_ratio_threshold = st.slider("Length Ratio Threshold", 0.1, 1.0, 0.5, 0.01) | |
qatc_model_name = st.selectbox("QATC Model", [ | |
"SemViQA/qatc-infoxlm-viwikifc", | |
"SemViQA/qatc-infoxlm-isedsc01", | |
"SemViQA/qatc-vimrc-viwikifc", | |
"SemViQA/qatc-vimrc-isedsc01" | |
]) | |
bc_model_name = st.selectbox("Binary Classification Model", [ | |
"SemViQA/bc-xlmr-viwikifc", | |
"SemViQA/bc-xlmr-isedsc01", | |
"SemViQA/bc-infoxlm-viwikifc", | |
"SemViQA/bc-infoxlm-isedsc01", | |
"SemViQA/bc-erniem-viwikifc", | |
"SemViQA/bc-erniem-isedsc01" | |
]) | |
tc_model_name = st.selectbox("3-Class Classification Model", [ | |
"SemViQA/tc-xlmr-viwikifc", | |
"SemViQA/tc-xlmr-isedsc01", | |
"SemViQA/tc-infoxlm-viwikifc", | |
"SemViQA/tc-infoxlm-isedsc01", | |
"SemViQA/tc-erniem-viwikifc", | |
"SemViQA/tc-erniem-isedsc01" | |
]) | |
show_details = st.checkbox("Show probability details", value=False) | |
# Store verification history | |
if 'history' not in st.session_state: | |
st.session_state.history = [] | |
if 'latest_result' not in st.session_state: | |
st.session_state.latest_result = None | |
if 'is_verifying' not in st.session_state: | |
st.session_state.is_verifying = False | |
# Load selected models | |
tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering) | |
tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification, is_bc=True) | |
tokenizer_tc, model_tc = load_model(tc_model_name, ClaimModelForClassification) | |
# Icons for results | |
verdict_icons = { | |
"SUPPORTED": "✅", | |
"REFUTED": "❌", | |
"NEI": "⚠️" | |
} | |
# Create tabs: Verify, History, About | |
tabs = st.tabs(["Verify", "History", "About"]) | |
# --- Verify Tab --- | |
with tabs[0]: | |
st.subheader("Verify Information") | |
# Use 2-column layout: inputs on left, results on right | |
col_input, col_result = st.columns([2, 1]) | |
with col_input: | |
claim = st.text_area("Enter Claim", "Vietnam is a country in Southeast Asia.") | |
context = st.text_area("Enter Context", "Vietnam is a country located in Southeast Asia, covering an area of over 331,000 km² with a population of more than 98 million people.") | |
def start_verification(): | |
st.session_state.is_verifying = True | |
st.experimental_rerun() | |
if st.button("Verify", key="verify_button", on_click=start_verification): | |
pass | |
# Display results in right column | |
with col_result: | |
st.markdown("<h3>Verification Results</h3>", unsafe_allow_html=True) | |
if st.session_state.is_verifying: | |
# Show loading animation | |
st.markdown(""" | |
<div class="result-box"> | |
<p><strong>Processing verification...</strong></p> | |
<div class="loading-animation"> | |
<span class="dot"></span> | |
<span class="dot"></span> | |
<span class="dot"></span> | |
</div> | |
<p>1. Extracting evidence...</p> | |
<p>2. Running binary classification...</p> | |
<p>3. Running 3-class classification...</p> | |
<p>4. Determining final verdict...</p> | |
</div> | |
""", unsafe_allow_html=True) | |
# Perform actual verification | |
with torch.no_grad(): | |
# Extract evidence and classify information | |
evidence = extract_evidence_tfidf_qatc( | |
claim, context, model_qatc, tokenizer_qatc, | |
"cuda" if torch.cuda.is_available() else "cpu", | |
confidence_threshold=tfidf_threshold, | |
length_ratio_threshold=length_ratio_threshold | |
) | |
verdict = "NEI" | |
details = "" | |
prob3class, pred_tc = classify_claim( | |
claim, evidence, model_tc, tokenizer_tc, | |
"cuda" if torch.cuda.is_available() else "cpu" | |
) | |
if pred_tc != 0: | |
prob2class, pred_bc = classify_claim( | |
claim, evidence, model_bc, tokenizer_bc, | |
"cuda" if torch.cuda.is_available() else "cpu" | |
) | |
if pred_bc == 0: | |
verdict = "SUPPORTED" | |
elif prob2class > prob3class: | |
verdict = "REFUTED" | |
else: | |
verdict = ["NEI", "SUPPORTED", "REFUTED"][pred_tc] | |
if show_details: | |
details = f"<p><strong>3-Class Probability:</strong> {prob3class.item():.2f} - <strong>2-Class Probability:</strong> {prob2class.item():.2f}</p>" | |
# Save verification history and latest result | |
st.session_state.history.append({ | |
"claim": claim, | |
"evidence": evidence, | |
"verdict": verdict | |
}) | |
st.session_state.latest_result = { | |
"claim": claim, | |
"evidence": evidence, | |
"verdict": verdict, | |
"details": details | |
} | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
# Turn off verification flag | |
st.session_state.is_verifying = False | |
st.experimental_rerun() | |
elif st.session_state.latest_result is not None: | |
res = st.session_state.latest_result | |
st.markdown(f""" | |
<div class='result-box'> | |
<p><strong>Claim:</strong> {res['claim']}</p> | |
<p><strong>Evidence:</strong> {res['evidence']}</p> | |
<p class='verdict'><span class='verdict-icon'>{verdict_icons.get(res['verdict'], '')}</span>{res['verdict']}</p> | |
{res['details']} | |
</div> | |
""", unsafe_allow_html=True) | |
# Download verification result | |
result_text = f"Claim: {res['claim']}\nEvidence: {res['evidence']}\nVerdict: {res['verdict']}\nDetails: {res['details']}" | |
st.download_button("Download Result", data=result_text, file_name="verification_result.txt", mime="text/plain") | |
else: | |
st.info("No verification results yet.") | |
# --- History Tab --- | |
with tabs[1]: | |
st.subheader("Verification History") | |
if st.session_state.history: | |
for idx, record in enumerate(reversed(st.session_state.history), 1): | |
st.markdown(f"**{idx}. Claim:** {record['claim']} \n**Result:** {verdict_icons.get(record['verdict'], '')} {record['verdict']}") | |
else: | |
st.write("No verification history yet.") | |
# --- About Tab --- | |
with tabs[2]: | |
st.subheader("About") | |
st.markdown(""" | |
<p align="center"> | |
<a href="https://arxiv.org/abs/2503.00955"> | |
<img src="https://img.shields.io/badge/arXiv-2411.00918-red?style=flat&label=arXiv"> | |
</a> | |
<a href="https://huggingface.co/SemViQA"> | |
<img src="https://img.shields.io/badge/Hugging%20Face-Model-yellow?style=flat"> | |
</a> | |
<a href="https://pypi.org/project/SemViQA"> | |
<img src="https://img.shields.io/pypi/v/SemViQA?color=blue&label=PyPI"> | |
</a> | |
<a href="https://github.com/DAVID-NGUYEN-S16/SemViQA"> | |
<img src="https://img.shields.io/github/stars/DAVID-NGUYEN-S16/SemViQA?style=social"> | |
</a> | |
</p> | |
""", unsafe_allow_html=True) | |
st.markdown(""" | |
**Description:** | |
SemViQA is a Semantic QA system designed to verify information in Vietnamese. | |
The system extracts evidence from the provided context and classifies information as **SUPPORTED**, **REFUTED**, or **NEI** (Not Enough Information) based on advanced models. | |
""") |