import numpy as np from PIL import Image import gradio as gr from deepface import DeepFace from datasets import load_dataset, DownloadConfig import os os.system("rm -rf ~/.cache/huggingface/hub/datasets--Segizu--dataset_faces") # ✅ Cargar el dataset de Hugging Face forzando la descarga limpia download_config = DownloadConfig(force_download=True) dataset = load_dataset("Segizu/dataset_faces", download_config=download_config) if "train" in dataset: dataset = dataset["train"] # 🔄 Preprocesar imagen para Facenet def preprocess_image(img): img_rgb = img.convert("RGB") img_resized = img_rgb.resize((160, 160), Image.Resampling.LANCZOS) return np.array(img_resized) # 📦 Construir base de datos de embeddings def build_database(): database = [] for i, item in enumerate(dataset): try: img = item["image"] img_processed = preprocess_image(img) embedding = DeepFace.represent( img_path=img_processed, model_name="Facenet", enforce_detection=False )[0]["embedding"] database.append((f"image_{i}", img, embedding)) except Exception as e: print(f"❌ No se pudo procesar imagen {i}: {e}") return database # 🔍 Buscar rostros similares def find_similar_faces(uploaded_image): try: img_processed = preprocess_image(uploaded_image) query_embedding = DeepFace.represent( img_path=img_processed, model_name="Facenet", enforce_detection=False )[0]["embedding"] except: return [], "⚠ No se detectó un rostro válido en la imagen." similarities = [] for name, db_img, embedding in database: dist = np.linalg.norm(np.array(query_embedding) - np.array(embedding)) sim_score = 1 / (1 + dist) similarities.append((sim_score, name, db_img)) similarities.sort(reverse=True) top_matches = similarities[:] gallery_items = [] text_summary = "" for sim, name, img in top_matches: caption = f"{name} - Similitud: {sim:.2f}" gallery_items.append((img, caption)) text_summary += caption + "\n" return gallery_items, text_summary # ⚙️ Inicializar base database = build_database() # 🎛️ Interfaz Gradio demo = gr.Interface( fn=find_similar_faces, inputs=gr.Image(label="📤 Sube una imagen", type="pil"), outputs=[ gr.Gallery(label="📸 Rostros más similares"), gr.Textbox(label="🧠 Similitud", lines=6) ], title="🔍 Buscador de Rostros con DeepFace", description="Sube una imagen y se comparará contra los rostros del dataset alojado en Hugging Face (`Segizu/dataset_faces`)." ) demo.launch()