Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
import re | |
import json | |
import urllib.parse | |
from bs4 import BeautifulSoup | |
import numpy as np | |
import sympy as sp | |
from datetime import datetime, timedelta | |
import dateutil.parser | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- GAIA Agent Definition --- | |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ | |
class GaiaAgent: | |
def __init__(self): | |
print("GaiaAgent initialized.") | |
self.session = requests.Session() | |
self.session.headers.update({ | |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36' | |
}) | |
def search_web(self, query, max_results=3): | |
"""Perform web search using DuckDuckGo instant answers or basic search""" | |
try: | |
# Try DuckDuckGo instant answer API first | |
ddg_url = f"https://api.duckduckgo.com/?q={urllib.parse.quote(query)}&format=json&no_html=1&skip_disambig=1" | |
response = self.session.get(ddg_url, timeout=10) | |
if response.status_code == 200: | |
data = response.json() | |
if data.get('AbstractText'): | |
return data['AbstractText'] | |
if data.get('Answer'): | |
return data['Answer'] | |
# Fallback to basic web scraping (limited) | |
search_url = f"https://html.duckduckgo.com/html/?q={urllib.parse.quote(query)}" | |
response = self.session.get(search_url, timeout=10) | |
if response.status_code == 200: | |
soup = BeautifulSoup(response.text, 'html.parser') | |
results = soup.find_all('a', class_='result__snippet', limit=max_results) | |
if results: | |
return " ".join([r.get_text().strip() for r in results]) | |
return f"Unable to search for: {query}" | |
except Exception as e: | |
return f"Search error: {str(e)}" | |
def calculate_math(self, expression): | |
"""Safely evaluate mathematical expressions""" | |
try: | |
# Clean the expression | |
expression = re.sub(r'[^0-9+\-*/().\s]', '', expression) | |
# Use sympy for safe evaluation | |
result = sp.sympify(expression).evalf() | |
return str(result) | |
except Exception as e: | |
return f"Math error: {str(e)}" | |
def parse_date(self, date_string): | |
"""Parse various date formats""" | |
try: | |
parsed_date = dateutil.parser.parse(date_string) | |
return parsed_date.strftime("%Y-%m-%d") | |
except Exception as e: | |
return f"Date parsing error: {str(e)}" | |
def extract_numbers(self, text): | |
"""Extract numbers from text""" | |
numbers = re.findall(r'-?\d+\.?\d*', text) | |
return [float(n) for n in numbers if n] | |
def process_question(self, question): | |
"""Process different types of questions with various strategies""" | |
question_lower = question.lower() | |
# Mathematical questions | |
if any(word in question_lower for word in ['calculate', 'compute', 'math', '+', '-', '*', '/', 'equals', 'sum', 'product']): | |
numbers = self.extract_numbers(question) | |
if len(numbers) >= 2: | |
if 'sum' in question_lower or '+' in question: | |
return str(sum(numbers)) | |
elif 'product' in question_lower or '*' in question: | |
result = 1 | |
for n in numbers: | |
result *= n | |
return str(result) | |
elif 'difference' in question_lower or '-' in question: | |
return str(numbers[0] - numbers[1] if len(numbers) >= 2 else numbers[0]) | |
# Try to extract and evaluate mathematical expressions | |
math_pattern = r'[\d+\-*/().\s]+' | |
math_expr = re.search(math_pattern, question) | |
if math_expr: | |
return self.calculate_math(math_expr.group()) | |
# Date/time questions | |
if any(word in question_lower for word in ['date', 'time', 'year', 'month', 'day', 'when', 'ago', 'from now']): | |
# Try to extract dates | |
date_patterns = [ | |
r'\d{4}-\d{2}-\d{2}', | |
r'\d{1,2}/\d{1,2}/\d{4}', | |
r'\d{1,2}-\d{1,2}-\d{4}' | |
] | |
for pattern in date_patterns: | |
dates = re.findall(pattern, question) | |
if dates: | |
return self.parse_date(dates[0]) | |
# If asking about current date/time | |
if 'today' in question_lower or 'now' in question_lower: | |
return datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
# Questions that might need web search | |
if any(word in question_lower for word in ['who is', 'what is', 'where is', 'when did', 'how many', 'capital of', 'population of']): | |
search_result = self.search_web(question) | |
if search_result and "error" not in search_result.lower(): | |
return search_result | |
# Geography questions | |
if any(word in question_lower for word in ['country', 'city', 'capital', 'continent', 'ocean', 'river']): | |
search_result = self.search_web(question) | |
if search_result and "error" not in search_result.lower(): | |
return search_result | |
# Science/factual questions | |
if any(word in question_lower for word in ['element', 'chemical', 'planet', 'temperature', 'speed of light', 'gravity']): | |
search_result = self.search_web(question) | |
if search_result and "error" not in search_result.lower(): | |
return search_result | |
# General knowledge questions - try web search | |
search_result = self.search_web(question) | |
if search_result and "error" not in search_result.lower() and len(search_result) > 20: | |
return search_result | |
# If no specific strategy worked, provide a thoughtful response | |
return self.general_reasoning(question) | |
def general_reasoning(self, question): | |
"""Apply general reasoning for questions that don't fit specific categories""" | |
question_lower = question.lower() | |
# Yes/No questions | |
if question.endswith('?') and any(word in question_lower for word in ['is', 'are', 'can', 'does', 'do', 'will', 'would']): | |
# Simple heuristics for common yes/no patterns | |
if 'impossible' in question_lower or 'cannot' in question_lower: | |
return "No" | |
elif 'possible' in question_lower or 'can' in question_lower: | |
return "Yes" | |
# Multiple choice detection | |
if re.search(r'\b[A-D]\)', question) or 'choose' in question_lower: | |
# Try to extract the most likely answer based on context | |
options = re.findall(r'[A-D]\)\s*([^A-D\n]+)', question) | |
if options: | |
return options[0].strip() # Return first option as fallback | |
# Number-based questions | |
numbers = self.extract_numbers(question) | |
if numbers: | |
if 'how many' in question_lower: | |
return str(int(max(numbers))) # Return largest number found | |
elif 'which year' in question_lower or 'what year' in question_lower: | |
years = [n for n in numbers if 1900 <= n <= 2024] | |
if years: | |
return str(int(years[0])) | |
# Default fallback - try to give a reasonable answer | |
if 'what' in question_lower: | |
return "Information not available" | |
elif 'how' in question_lower: | |
return "Process not specified" | |
elif 'where' in question_lower: | |
return "Location not determined" | |
elif 'when' in question_lower: | |
return "Time not specified" | |
elif 'who' in question_lower: | |
return "Person not identified" | |
else: | |
return "Unable to determine answer" | |
def __call__(self, question: str) -> str: | |
print(f"GaiaAgent received question (first 100 chars): {question[:100]}...") | |
try: | |
answer = self.process_question(question) | |
print(f"GaiaAgent returning answer: {answer[:100]}...") | |
return answer | |
except Exception as e: | |
print(f"Error in GaiaAgent: {e}") | |
return f"Error processing question: {str(e)}" | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the GaiaAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = GaiaAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# GAIA Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Agent Capabilities:** | |
- Mathematical calculations and computations | |
- Web search for factual information | |
- Date and time processing | |
- General reasoning and pattern recognition | |
- Multi-step problem solving | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for GAIA Agent Evaluation...") | |
demo.launch(debug=True, share=False) |