import os
from gradio.themes import ThemeClass as Theme
import numpy as np
import argparse
import gradio as gr
from typing import Any, Iterator
from typing import Iterator, List, Optional, Tuple
import filelock
import glob
import json
import time
from gradio.routes import Request
from gradio.utils import SyncToAsyncIterator, async_iteration
from gradio.helpers import special_args
import anyio
from typing import AsyncGenerator, Callable, Literal, Union, cast, Generator

from gradio_client.documentation import document, set_documentation_group
from gradio.components import Button, Component
from gradio.events import Dependency, EventListenerMethod
from typing import List, Optional, Union, Dict, Tuple
from tqdm.auto import tqdm
from huggingface_hub import snapshot_download
from gradio.components.base import Component

from .base_demo import register_demo, get_demo_class, BaseDemo


from .chat_interface import (
    SYSTEM_PROMPT,
    MODEL_NAME,
    MAX_TOKENS,
    TEMPERATURE,
    CHAT_EXAMPLES,
    gradio_history_to_openai_conversations,
    gradio_history_to_conversation_prompt,
    DATETIME_FORMAT,
    get_datetime_string,
    chat_response_stream_multiturn_engine,
    ChatInterfaceDemo,
    CustomizedChatInterface,
)

from gradio.events import Events

import inspect
from typing import AsyncGenerator, Callable, Literal, Union, cast

import anyio
from gradio_client import utils as client_utils
from gradio_client.documentation import document

from gradio.blocks import Blocks
from gradio.components import (
    Button,
    Chatbot,
    Component,
    Markdown,
    State,
    Textbox,
    get_component_instance,
)
from gradio.events import Dependency, on
from gradio.helpers import create_examples as Examples  # noqa: N812
from gradio.helpers import special_args
from gradio.layouts import Accordion, Group, Row
from gradio.routes import Request
from gradio.themes import ThemeClass as Theme
from gradio.utils import SyncToAsyncIterator, async_iteration

from ..globals import MODEL_ENGINE

from ..configs import (
    USE_PANEL,
    IMAGE_TOKEN,
    IMAGE_TOKEN_INTERACTIVE,
    CHATBOT_HEIGHT,
    ALLOWED_PATHS,
)


from .multimodal_chat_interface import (
    DOC_INSTRUCTION,
    DOC_TEMPLATE,
    CSS,
    undo_history,
    undo_history_until_last_assistant_turn,
    MultiModalChatInterface,
    gradio_history_to_conversation_prompt,
    gradio_history_to_openai_conversations,
    gradio_history_to_vision_conversation_prompt_paths,
    gradio_history_to_doc_conversation_prompt,
    gradio_history_to_vision_doc_conversation_prompt_paths,
    VisionChatInterfaceDemo,
    vision_chat_response_stream_multiturn_engine,
)

import glob
from pathlib import Path
from gradio import utils as gradio_utils

PREF_DIR = os.environ.get("PREF_DIR", "./tmp")
PREFERENCE_MAKE_DATA_PATH = os.environ.get("PREFERENCE_MAKE_DATA_PATH", "assets/example_pref.json")

IMAGE_DIR = os.environ.get("IMAGE_DIR", "./tmp_image")

EXAMPLE_IMAGE_PATHS = [
    x
    for x in glob.glob(os.path.join(IMAGE_DIR, "*"))
]
print(f'IMAGES: {EXAMPLE_IMAGE_PATHS[:3]=}')


# ! Existing images

IMAGE_GLOB_ROOT = "/mnt/workspace/workgroup/phi/raw_data/multimodal_seallm/processed/sft/dpo_examples"
# ALLOWED_PATHS.append(IMAGE_GLOB_ROOT)
IMAGE_GLOBS = {
    # "geometry": "geo3k/train/*/img_diagram.png",
    "Geometry": ["geoqa_plus/*png", "Ask question about to solve the puzzle, calculating angles, find values, ... Provide extra information in the question (e.g 'Angle 1 = 30 degrees, find angle 2 from image.')"],
    "Everyday": ["gqa/images/*", "Ask question to (1) describe, (2) find details, (3) negation (e.g 'Where's the cat?' while there is no cat in image.), (4) write stories ...."],
    "OCR (read text)": ["ocr_vqa/images/*", "Ask question (1) full OCR description, (2) read specific details (e.g 'Who wrote the book?')."],
    "OpenViVQA": ["OpenViVQA/training-images/*", "Only vietnamese, (1) full OCR description, (2) read specific details, (3) image description and question answering"],
    "Text-VQA": ["textvqa/train_images/*", "Ask question to (1) describe, (2) find details, (3) negation (e.g 'Where's the cat?' while there is no cat in image.), (4) write stories, (5) reasoning"],
    "Landmarks": ["web-landmark/images/*", "Ask question to (1) Where is landmarks (2) What to do at that place (3) Write stories, (4) give advise for tourists..."],
    "Everyday-VG2": ["vg/VG_100K_2/*", "Same with Everyday"],
}

IMAGE_CUT_OFF_BEGIN = 0
IMAGE_CUT_OFF = 100
# IMAGE_CUT_OFF = 20

IMAGE_GLOB_PATHS = {}
IMAGE_GLOB_DESCS = {}
for k, v in IMAGE_GLOBS.items():
    glob_p, description = v
    paths = []
    for i, p in enumerate(glob.glob(os.path.join(IMAGE_GLOB_ROOT, glob_p))):
        if i < IMAGE_CUT_OFF_BEGIN:
            continue
        if i >= IMAGE_CUT_OFF + IMAGE_CUT_OFF_BEGIN:
            break
        paths.append(p)
    IMAGE_GLOB_PATHS[k] = paths
    IMAGE_GLOB_DESCS[k] = description

print(IMAGE_GLOB_PATHS['Geometry'][:10])


def read_json(json_file):
    print(f'Reading : {json_file}')
    with open(json_file, 'r', encoding='utf-8') as f:
        rows = json.load(f)
    return rows


def write_json(data, json_file):
    with open(json_file, 'w', encoding='utf-8') as f:
        json.dump(data, f, indent=4, ensure_ascii=False)


def convert_pref_data_to_openai_format(rows_dict):
    for key, r in rows_dict.items():
        if "conversation_prefix" in r:
            assert "responses" in r, f'invalid: {r}'
            continue
        history = r['history']
        conversations = []
        for user, assistant in history:
            conversations.append({"role": "user", "content": user.strip()})
            conversations.append({"role": "assistant", "content": assistant.strip()})
        r['conversation_prefix'] = conversations[:-1]
        r['responses'] = [conversations[-1]]
        r['original_response'] = conversations[-1]
        if "lang" not in r:
            r['lang'] = key[-2:]
    # missing an item in responses
    lang_set = list(set([r['lang'] for r in rows_dict.values()]))
    return rows_dict, lang_set


def convert_mm_pref_data_to_openai_format(rows_dict):
    pass


PREFERENCE_RATE_DICT = None
LANG_SET = ["en", "vi", "id", 'ms', "th", "zh", 'lo', 'km', 'tl', 'my']
if PREFERENCE_MAKE_DATA_PATH is not None and os.path.exists(PREFERENCE_MAKE_DATA_PATH):
    print(f'Loading {PREFERENCE_MAKE_DATA_PATH}')
    PREFERENCE_RATE_DICT = read_json(PREFERENCE_MAKE_DATA_PATH)
    PREFERENCE_RATE_DICT, _LANG_SET = convert_pref_data_to_openai_format(PREFERENCE_RATE_DICT)
    LANG_SET = LANG_SET + [l for l in _LANG_SET if l not in LANG_SET]





@document()
class CustomJsonlLogger(gr.FlaggingCallback):
    def __init__(self):
        self.num_lines = 0

    def setup(
        self,
        components: list[Component],
        flagging_dir: Union[str, Path],
    ):
        self.components = components
        self.flagging_dir = flagging_dir
        os.makedirs(flagging_dir, exist_ok=True)
        flagging_dir = self.flagging_dir
        log_filepath = Path(flagging_dir) / "log.jsonl"
        if Path(log_filepath).exists():
            with open(log_filepath, "rb") as f:
                self.num_lines = sum(1 for _ in f)
        else:
            self.num_lines = 0

    def flag(
        self,
        flag_data: list[Any],
        flag_option: str = "",
        username: Union[str, None] = None,
    ) -> int:
        import datetime
        flagging_dir = self.flagging_dir
        log_filepath = Path(flagging_dir) / "log.jsonl"
        is_new = not Path(log_filepath).exists()
        headers = [
            getattr(component, "label", None) or f"component {idx}"
            for idx, component in enumerate(self.components)
        ] + [
            "flag",
            "username",
            "timestamp",
        ]

        csv_data = []
        for idx, (component, sample) in enumerate(zip(self.components, flag_data)):
            save_dir = Path(
                flagging_dir
            ) / client_utils.strip_invalid_filename_characters(
                getattr(component, "label", None) or f"component {idx}"
            )
            if gradio_utils.is_update(sample):
                csv_data.append(str(sample))
            else:
                csv_data.append(
                    component.flag(sample, flag_dir=save_dir)
                    if sample is not None
                    else ""
                )
        csv_data.append(flag_option)
        csv_data.append(username if username is not None else "")
        csv_data.append(str(datetime.datetime.now()))

        json_obj = {}
        for idx, (component, sample) in enumerate(zip(self.components, flag_data)):
            save_dir = Path(
                flagging_dir
            ) / client_utils.strip_invalid_filename_characters(
                getattr(component, "label", None) or f"component {idx}"
            )
            label = getattr(component, "label", None) or f"component {idx}"
            if gradio_utils.is_update(sample):
                value = str(sample)
            else:
                value = component.flag(sample, flag_dir=save_dir) if sample is not None else None
            json_obj[label] = value
        
        json_obj['flag'] = flag_option
        json_obj['username'] = username if username is not None else ""
        json_obj['timestamp'] = str(datetime.datetime.now())

        with open(log_filepath, "a", encoding="utf-8") as jsonl_file:
            jsonl_file.write(json.dumps(json_obj, ensure_ascii=False) + "\n")

        self.num_lines += 1
        return self.num_lines

@document()
class VisionJsonlLogger(CustomJsonlLogger):
    # ! must save the image
    def flag(
        self,
        flag_data: list[Any],
        flag_option: str = "",
        username: Union[str, None] = None,
    ) -> int:
        import datetime
        from shutil import copyfile
        flagging_dir = self.flagging_dir
        log_filepath = Path(flagging_dir) / "log.jsonl"
        image_dir = Path(flagging_dir) / "images"
        is_new = not Path(log_filepath).exists()
        os.makedirs(image_dir, exist_ok=True)
        headers = [
            getattr(component, "label", None) or f"component {idx}"
            for idx, component in enumerate(self.components)
        ] + [
            "flag",
            "username",
            "timestamp",
        ]

        csv_data = []
        for idx, (component, sample) in enumerate(zip(self.components, flag_data)):
            save_dir = Path(
                flagging_dir
            ) / client_utils.strip_invalid_filename_characters(
                getattr(component, "label", None) or f"component {idx}"
            )
            if gradio_utils.is_update(sample):
                csv_data.append(str(sample))
            else:
                csv_data.append(
                    component.flag(sample, flag_dir=save_dir)
                    if sample is not None
                    else ""
                )
        csv_data.append(flag_option)
        csv_data.append(username if username is not None else "")
        csv_data.append(str(datetime.datetime.now()))

        json_obj = {}
        for idx, (component, sample) in enumerate(zip(self.components, flag_data)):
            save_dir = Path(
                flagging_dir
            ) / client_utils.strip_invalid_filename_characters(
                getattr(component, "label", None) or f"component {idx}"
            )
            label = getattr(component, "label", None) or f"component {idx}"
            if gradio_utils.is_update(sample):
                value = str(sample)
            else:
                value = component.flag(sample, flag_dir=save_dir) if sample is not None else None
            if isinstance(value, list):
                # Expecting history
                from .multimodal_chat_interface import gradio_history_to_vision_conversations_paths
                conversations, image_paths = gradio_history_to_vision_conversations_paths(value)
                new_paths = [
                    os.path.join(image_dir, str(datetime.datetime.now()) + os.path.basename(p))
                    for p in image_paths
                ]
                for np, ip in zip(new_paths, image_paths):
                    copyfile(ip, np)
                json_obj[label] = conversations
                json_obj[label + "-images"] = new_paths
            else:
                json_obj[label] = value
        
        json_obj['flag'] = flag_option
        json_obj['username'] = username if username is not None else ""
        json_obj['timestamp'] = str(datetime.datetime.now())

        with open(log_filepath, "a", encoding="utf-8") as jsonl_file:
            jsonl_file.write(json.dumps(json_obj, ensure_ascii=False) + "\n")

        self.num_lines += 1
        return self.num_lines





def get_preference_radio():
    pref_choice = gr.Radio(
        ['1 Better', '2 Better', 'Add best', 'dirty/undecided'], 
        label='preference',
        info="Indicate if 1 or 2 is better. If both not excellent, pick 'Add best' and write the better one below. If question or answer is problematic, cannot decide, then choose dirty/undecided."
    )
    return pref_choice



def vision_submit_vision_response_stream_multiturn_engine_yhistory(
        message: str,
        input_image: str,    
        history: List[List[str]],
        temperature: float,
        max_tokens: int,
        system_prompt: Optional[str] = SYSTEM_PROMPT,
        image_token: Optional[str] = IMAGE_TOKEN,
):
    # ! Add message and input_image into the history and submit
    message = message.strip()
    if message == "":
        gr.Warning(f'Input text cannot be empty')
        yield history
    
    new_history = history
    if input_image is not None and os.path.exists(input_image):
        # ! image exist, so add message if it's not empty
        new_history = new_history + [[(input_image,), None]]
        if message != "":
            new_history = new_history + [[message, None]]
    else:
        # ! message cannot be empty if there is no input_image
        if message == "":
            gr.Warning(f'Input text cannot be empty!')
            yield history
            return
        else:
            new_history = new_history + [[message, None]]
    
    yield new_history

    # ! yield current history
    # use vision_chat_response_stream_multiturn_engine
    response = None
    for response, num_tokens in vision_chat_response_stream_multiturn_engine(
        history=new_history,
        temperature=temperature, max_tokens=max_tokens, system_prompt=system_prompt,
        image_token=image_token,
    ):
        yield new_history[:-1] + [[message, response]]
    
    if response is not None:
        yield new_history[:-1] + [[message, response]]


def vision_submit_2_histories(
        message: str,
        input_image: str,    
        history1: List[List[str]],
        history2: List[List[str]],
        temperature: float,
        max_tokens: int,
        system_prompt: Optional[str] = SYSTEM_PROMPT,
        image_token: Optional[str] = IMAGE_TOKEN,      
):
    # need to yield 2 history
    new_history1 = history1
    new_history2 = history2
    for his in vision_submit_vision_response_stream_multiturn_engine_yhistory(
        message, input_image, history1, temperature, max_tokens, system_prompt, image_token,
    ):
        new_history1 = his
        yield new_history1, new_history2

    for his in vision_submit_vision_response_stream_multiturn_engine_yhistory(
        message, input_image, history2, temperature, max_tokens, system_prompt, image_token,
    ):
        new_history2 = his
        yield new_history1, new_history2


def undo_history_until_last_assistant_turn_message(history):
    history = undo_history(history)
    while len(history) > 0 and history[-1][-1] is None:
        history = undo_history(history)
    return history, history



def replace_last_response(input_text: str, history: List[Tuple[str, str]]):
    # replace the last response with input_text
    input_text = input_text.strip()
    if input_text == "":
        gr.Warning(f'prompt empty! dont send empty prompt')
        return "", history
    if len(history) == 0:
        gr.Warning(f'History empty, cannot replace')
        return input_text, history
    history[-1][-1] = input_text
    return "", history


# def load_image_from_gallery(selected_state: gr.SelectData):
#     convo = sft_data_list[selected_state.index]
#     dirname = sft_dirname
#     image_path = os.path.join(dirname, convo['image'])
#     return image_path

def load_image_from_gallery(data_list, selected_state: gr.SelectData):
    image_path = data_list[selected_state.index]
    # dirname = sft_dirname
    # image_path = os.path.join(dirname, convo['image'])
    return image_path


@register_demo
class VisionLivePreferencePickDemo(VisionChatInterfaceDemo):
    @property
    def examples(self):
        return [
            ["What's strange about this image?", "assets/dog_monalisa.jpeg",],
            ["Explain why the sky is blue.", None,],
        ]
    
    @property
    def tab_name(self):
        return "Vision Live Preference"

    def create_demo(
            self, 
            title: str | None = None, 
            description: str | None = None, 
            **kwargs
        ) -> gr.Blocks:
        system_prompt = kwargs.get("system_prompt", SYSTEM_PROMPT)
        max_tokens = kwargs.get("max_tokens", MAX_TOKENS)
        temperature = kwargs.get("temperature", TEMPERATURE)
        model_name = kwargs.get("model_name", MODEL_NAME)

        log_folder = os.path.join(PREF_DIR, "live_preference_pick")
        description = f"""
## Live generation preference picking
Live generation is similar to the Preference Picking demo, except that linguists can come up with questions/prompts **on their own** instead of pre-existing data.

PREF_DIR: {log_folder}
    """
    
        instruction_content = f"""
### Tasks
You are enabled to freely build 2 different conversations using the model and pick the better conversations. 
You can also create best responses if model's generated ones are not good.

### Requirements
The 2 conversations must share at least the first user query. Other than that, the length, number of turns, user queries (except the first one) can vary.
For example:
```
# Valid conversation pairs
"User: Hello, 1+1=?" -> "Bot: 1+1=2" -> "User: what about 123+13?" -> "Bot: 123+13=136"
                                                                   -> "Bot: I dont know"

"User: Hello, 1+1=?" -> "Bot: 1+1=2" -> "User: what about 123+13?" -> "Bot: 123+13=136"
                     -> "Bot: 1+1=3" -> "User: that's wrong!" -> "Bot: Im sorry man."
```

```
# Invalid pairs:
"User: Hello, 1+1=?" -> "Bot: 1+1=2"
"User: Tell me a joke" -> "Bot: here is the joke for your..."
```

### Steps to proceed:
There are multiple buttons:
* `Submit both`: Submit the text prompt to both chatboxes, expect different (or same) answers.
* `Regenerate`: Regenerate the responses of both chatboxes from the last user queries.
* `Clear`: Clear both chatboxes.

The following numbered buttons (1 or 2) is applied to only Bot-1 or Bot-2 respectively.
* `Submit-1`: Submit the text prompt only one chatbot (1 or 2).
* `Undo-1`: Undo the last generation (both last response and query)
* `Regen-1`: Regenerate the last response.
* `Replace-1`: Replace the last response with a better response (in case the last response is incorrect, unsatisfactory)

    """
        callback = VisionJsonlLogger()
        with gr.Blocks(css=CSS) as pdemo:
            gr.Markdown(description)

            with gr.Accordion(label="Instructions and Guidelines", open=False):
                gr.Markdown(instruction_content)

            with gr.Accordion(label="Additional input", open=False):
                temp = gr.Number(value=temperature, label='Temperature', info="Higher -> more random")
                length = gr.Number(value=max_tokens, label='Max tokens', info='Increase if want more generation')
                # freq_pen = gr.Number(value=frequence_penalty, label='Frequency penalty', info='> 0 encourage new tokens over repeated tokens')
                # pres_pen = gr.Number(value=presence_penalty, label='Presence penalty', info='> 0 encourage new tokens, < 0 encourage existing tokens')
                # stop_strings = gr.Textbox(value="<s>,</s>,<|im_start|>", label='Stop strings', info='Comma-separated string to stop generation.', lines=1)
                system_prompt = gr.Textbox(value=system_prompt, label='system_prompt', lines=1)


            with gr.Row():
                chatbot_1 = gr.Chatbot(
                    [],
                    label="Bot-1",
                    elem_id="chatbot-1",
                    bubble_full_width=False,
                    latex_delimiters=[
                        # { "left": "$", "right": "$", "display": False},
                        { "left": "$$", "right": "$$", "display": True},
                    ],
                    show_copy_button=True,
                    layout="panel" if USE_PANEL else "bubble",
                    height=CHATBOT_HEIGHT,
                )
                chatbot_2 = gr.Chatbot(
                    [],
                    label="Bot-2",
                    elem_id="chatbot-2",
                    bubble_full_width=False,
                    latex_delimiters=[
                        # { "left": "$", "right": "$", "display": False},
                        { "left": "$$", "right": "$$", "display": True},
                    ],
                    show_copy_button=True,
                    layout="panel" if USE_PANEL else "bubble",
                    height=CHATBOT_HEIGHT,
                )
            
            with gr.Row():
                input_text = gr.Textbox(
                    scale=6,
                    lines=12,
                    # lines=4,
                    max_lines=40,
                    show_label=False,
                    placeholder="Enter text and press enter, or upload an image",
                    container=False,
                )
                # submit will submit the same input text to both responses
                input_image = gr.Image(
                    label="input_image", type="filepath", scale=3, 
                    # height=250,
                )
            with gr.Row():
                gen_submit = gr.Button('Send both', scale=1, variant='primary')
                # regenerate should not care about input_text, it just undo the previous history
                # regen_submit = gr.Button('Regenerate', scale=1)
                clear_btn = gr.Button('Clear', scale=1)
                # submit 
            with gr.Row():
                chat1_submit = gr.Button('Send-1', variant='primary')
                chat1_undo = gr.Button('Undo-1')
                # chat1_regenerate = gr.Button('Regen-1')
                chat1_replace = gr.Button('Replace-1')

                chat2_submit = gr.Button('Send-2', variant='primary')
                chat2_undo = gr.Button('Undo-2')
                # chat2_regenerate = gr.Button('Regen-2')
                chat2_replace = gr.Button('Replace-2')
            gr.Markdown(f'**Do not click `Record Choice` twice with the same data sample!**')
            with gr.Row():
                pref_choice = get_preference_radio()
            
            # with gr.Row():
            #     text_replace = gr.Textbox(
            #         placeholder="If both responses are not good, write a better response here. Only apply to the last response.",
            #         lines=2,
            #         max_lines=30,
            #         scale=6,
            #         label="best_response"
            #     )
                submit_choice_btn = gr.Button('Record Choice', variant='secondary')
            
            
            from functools import partial

            with gr.Row():
                gr.Examples(
                    label="Random images",
                    examples=[[x] for x in EXAMPLE_IMAGE_PATHS],
                    inputs=input_image,
                    cache_examples=False,
                    examples_per_page=100,
                )

            for k, plist in IMAGE_GLOB_PATHS.items():
                print(f'{k}: {plist[:5]}')
                gr.Markdown(f"{k}: {IMAGE_GLOB_DESCS[k]}")
                gallery = gr.Gallery(
                    label=k,
                    value=plist,
                    allow_preview=False,
                    columns=10,
                    # rows=2,
                    height=250,
                )
                def _load_image_from_gallery(selected_state: gr.SelectData):
                    image_path = selected_state.value['image']['path']
                    print(f'Select: {image_path}')
                    return image_path
                gallery.select(
                    _load_image_from_gallery,
                    # lambda select: plist[select.index],
                    # inputs=,
                    outputs=[input_image],
                    queue=False
                )
            
            # ! events for submit choices
            submit_choice_btn.click(
                lambda: gr.Button(value="Saving...", interactive=False, variant='stop'),
                None,
                submit_choice_btn,
                queue=False,
                api_name=False,
            )
            visual_feedback = True
            def flag_method(request: gr.Request, *args):
                # ! must save the image somewhere
                try:
                    callback.flag(args)
                except Exception as e:
                    print(f"Error while flagging: {e}")
                    if visual_feedback:
                        return "Error!"
                if not visual_feedback:
                    return
                gr.Info(f'Saving preference sucessful ({args[0]})')
                time.sleep(1)  # to provide enough time for the user to observe button change
                return gr.Button(value="Record Choice", interactive=True)

            callback.setup([chatbot_1, chatbot_2, pref_choice], log_folder)
            submit_choice_btn.click(
                flag_method, [chatbot_1, chatbot_2, pref_choice], submit_choice_btn, 
                preprocess=False, queue=False, api_name=False
            )

            # ! button evenrs
            from gradio.events import Dependency, EventListenerMethod, on
            generate_sub_events_both = [input_text.submit, gen_submit.click]
            on(
                generate_sub_events_both,
                vision_submit_2_histories,
                [
                    input_text, input_image, chatbot_1, chatbot_2,
                    temp, length, system_prompt
                ],
                [chatbot_1, chatbot_2],
                api_name=False,
                queue=True,
            ).then(
                lambda mes, img: ("", None),
                [input_text, input_image],
                [input_text, input_image],
                api_name=False,
                queue=False,
            )
            clear_btn.click(
                lambda c1, c2, txt, img: ([], [], "", None),
                [chatbot_1, chatbot_2, input_text, input_image],
                [chatbot_1, chatbot_2, input_text, input_image],
                api_name=False,
                queue=True,
            )
            chat1_submit.click(
                vision_submit_vision_response_stream_multiturn_engine_yhistory,
                [
                    input_text, input_image, chatbot_1,
                    temp, length, system_prompt,
                ],
                [chatbot_1],
                api_name=False,
                queue=True,
            ).then(
                lambda mes, img: ("", None),
                [input_text, input_image],
                [input_text, input_image],
                api_name=False,
                queue=False,
            )
            chat2_submit.click(
                vision_submit_vision_response_stream_multiturn_engine_yhistory,
                [
                    input_text, input_image, chatbot_2,
                    temp, length, system_prompt,
                ],
                [chatbot_2],
                api_name=False,
                queue=True,
            ).then(
                lambda mes, img: ("", None),
                [input_text, input_image],
                [input_text, input_image],
                api_name=False,
                queue=False,
            )
            chat1_undo.click(
                undo_history_until_last_assistant_turn,
                chatbot_1,
                [chatbot_1, input_text],
                api_name=False,
                queue=True,
            )
            chat2_undo.click(
                undo_history_until_last_assistant_turn,
                chatbot_2,
                [chatbot_2, input_text],
                api_name=False,
                queue=True,
            )
            chat1_replace.click(
                replace_last_response,
                [input_text, chatbot_1],
                [input_text, chatbot_1],
                api_name=False,
                queue=True,
            )
            chat2_replace.click(
                replace_last_response,
                [input_text, chatbot_2],
                [input_text, chatbot_2],
                api_name=False,
                queue=True,
            )

            
        

        return pdemo