# Copyright: DAMO Academy, Alibaba Group
# By Xuan Phi Nguyen at DAMO Academy, Alibaba Group

# Description:
"""
VLLM-based demo script to launch Language chat model for Southeast Asian Languages
"""


import os
import numpy as np
import argparse
import torch
import gradio as gr
from typing import Any, Iterator
from typing import Iterator, List, Optional, Tuple
import filelock
import glob
import json
import time
from gradio.routes import Request
from gradio.utils import SyncToAsyncIterator, async_iteration
from gradio.helpers import special_args
import anyio
from typing import AsyncGenerator, Callable, Literal, Union, cast

from gradio_client.documentation import document, set_documentation_group

from typing import List, Optional, Union, Dict, Tuple
from tqdm.auto import tqdm
from huggingface_hub import snapshot_download


# @@ environments ================

DEBUG = bool(int(os.environ.get("DEBUG", "1")))

# List of languages to block
BLOCK_LANGS = str(os.environ.get("BLOCK_LANGS", ""))
BLOCK_LANGS = [x.strip() for x in BLOCK_LANGS.strip().split(";")] if len(BLOCK_LANGS.strip()) > 0 else []

# for lang block, wether to block in history too
LANG_BLOCK_HISTORY = bool(int(os.environ.get("LANG_BLOCK_HISTORY", "0")))
TENSOR_PARALLEL = int(os.environ.get("TENSOR_PARALLEL", "1"))
DTYPE = os.environ.get("DTYPE", "bfloat16")

# ! (no debug) whether to download HF_MODEL_NAME and save to MODEL_PATH
DOWNLOAD_SNAPSHOT = bool(int(os.environ.get("DOWNLOAD_SNAPSHOT", "0")))
LOG_RESPONSE = bool(int(os.environ.get("LOG_RESPONSE", "0")))
# ! show model path in the demo page, only for internal
DISPLAY_MODEL_PATH = bool(int(os.environ.get("DISPLAY_MODEL_PATH", "1")))

# ! uploaded model path, will be downloaded to MODEL_PATH
HF_MODEL_NAME = os.environ.get("HF_MODEL_NAME", "DAMO-NLP-SG/seal-13b-chat-a")
# ! if model is private, need HF_TOKEN to access the model
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# ! path where the model is downloaded, either on ./ or persistent disc
MODEL_PATH = os.environ.get("MODEL_PATH", "./seal-13b-chat-a")

# ! log path
LOG_PATH = os.environ.get("LOG_PATH", "").strip()
LOG_FILE = None
SAVE_LOGS = LOG_PATH is not None and LOG_PATH != ''
if SAVE_LOGS:
    if os.path.exists(LOG_PATH):
        print(f'LOG_PATH exist: {LOG_PATH}')
    else:
        LOG_DIR = os.path.dirname(LOG_PATH)
        os.makedirs(LOG_DIR, exist_ok=True)

# ! get LOG_PATH as aggregated outputs in log
GET_LOG_CMD = os.environ.get("GET_LOG_CMD", "").strip()

print(f'SAVE_LOGS: {SAVE_LOGS} | {LOG_PATH}')
# print(f'GET_LOG_CMD: {GET_LOG_CMD}')

# ! !! Whether to delete the folder, ONLY SET THIS IF YOU WANT TO DELETE SAVED MODEL ON PERSISTENT DISC
DELETE_FOLDER = os.environ.get("DELETE_FOLDER", "")
IS_DELETE_FOLDER = DELETE_FOLDER is not None and os.path.exists(DELETE_FOLDER)
print(f'DELETE_FOLDER: {DELETE_FOLDER} | {DOWNLOAD_SNAPSHOT=}')

# ! list of keywords to disabled as security measures to comply with local regulation
KEYWORDS = os.environ.get("KEYWORDS", "").strip()
KEYWORDS = KEYWORDS.split(";") if len(KEYWORDS) > 0 else []
KEYWORDS = [x.lower() for x in KEYWORDS]

# bypass
BYPASS_USERS = os.environ.get("BYPASS_USERS", "").strip()
BYPASS_USERS = BYPASS_USERS.split(";") if len(BYPASS_USERS) > 0 else []

# gradio config
PORT = int(os.environ.get("PORT", "7860"))
# how many iterations to yield response
STREAM_YIELD_MULTIPLE = int(os.environ.get("STREAM_YIELD_MULTIPLE", "1"))
# how many iterations to perform safety check on response
STREAM_CHECK_MULTIPLE = int(os.environ.get("STREAM_CHECK_MULTIPLE", "0"))

# whether to enable to popup accept user
ENABLE_AGREE_POPUP = bool(int(os.environ.get("ENABLE_AGREE_POPUP", "0")))

# self explanatory
MAX_TOKENS = int(os.environ.get("MAX_TOKENS", "2048"))
TEMPERATURE = float(os.environ.get("TEMPERATURE", "0.1"))
FREQUENCE_PENALTY = float(os.environ.get("FREQUENCE_PENALTY", "0.1"))
PRESENCE_PENALTY = float(os.environ.get("PRESENCE_PENALTY", "0.0"))
gpu_memory_utilization = float(os.environ.get("gpu_memory_utilization", "0.9"))

# whether to enable quantization, currently not in use
QUANTIZATION = str(os.environ.get("QUANTIZATION", ""))


# Batch inference file upload
ENABLE_BATCH_INFER = bool(int(os.environ.get("ENABLE_BATCH_INFER", "1")))
BATCH_INFER_MAX_ITEMS = int(os.environ.get("BATCH_INFER_MAX_ITEMS", "100"))
BATCH_INFER_MAX_FILE_SIZE = int(os.environ.get("BATCH_INFER_MAX_FILE_SIZE", "500"))
BATCH_INFER_MAX_PROMPT_TOKENS = int(os.environ.get("BATCH_INFER_MAX_PROMPT_TOKENS", "4000"))
BATCH_INFER_SAVE_TMP_FILE = os.environ.get("BATCH_INFER_SAVE_TMP_FILE", "./tmp/pred.json")

# 
DATA_SET_REPO_PATH = str(os.environ.get("DATA_SET_REPO_PATH", ""))
DATA_SET_REPO = None

"""
Internal instructions of how to configure the DEMO

1. Upload SFT model as a model to huggingface: hugginface/models/seal_13b_a
2. If the model weights is private, set HF_TOKEN=<your private hf token> in https://huggingface.co/spaces/????/?????/settings
3. space config env: `HF_MODEL_NAME=SeaLLMs/seal-13b-chat-a` or the underlining model
4. If enable persistent storage: set
HF_HOME=/data/.huggingface
MODEL_PATH=/data/.huggingface/seal-13b-chat-a
if not:
MODEL_PATH=./seal-13b-chat-a


HF_HOME=/data/.huggingface
MODEL_PATH=/data/ckpt/seal-13b-chat-a
DELETE_FOLDER=/data/

"""

# ==============================
print(f'DEBUG mode: {DEBUG}')
print(f'Torch version: {torch.__version__}')
try:
    print(f'Torch CUDA version: {torch.version.cuda}')
except Exception as e:
    print(f'Failed to print cuda version: {e}')

try:
    compute_capability = torch.cuda.get_device_capability()
    print(f'Torch CUDA compute_capability: {compute_capability}')
except Exception as e:
    print(f'Failed to print compute_capability version: {e}')


# @@ constants ================

DTYPES = {
    'float16': torch.float16,
    'bfloat16': torch.bfloat16
}

llm = None
demo = None


BOS_TOKEN = '<s>'
EOS_TOKEN = '</s>'


SYSTEM_PROMPT_1 = """You are a helpful, respectful, honest and safe AI assistant built by Alibaba Group."""



# ######### RAG PREPARE
RAG_CURRENT_FILE, RAG_EMBED, RAG_CURRENT_VECTORSTORE = None, None, None

# RAG_EMBED_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
RAG_EMBED_MODEL_NAME = "sentence-transformers/LaBSE"


def load_embeddings():
    global RAG_EMBED
    if RAG_EMBED is None:
        from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings
        print(f'LOading embeddings: {RAG_EMBED_MODEL_NAME}')
        RAG_EMBED = HuggingFaceEmbeddings(model_name=RAG_EMBED_MODEL_NAME, model_kwargs={'trust_remote_code':True, "device": "cpu"})
    else:
        print(f'RAG_EMBED ALREADY EXIST: {RAG_EMBED_MODEL_NAME}: {RAG_EMBED=}')
    return RAG_EMBED


def get_rag_embeddings():
    return load_embeddings()

_ = get_rag_embeddings()

RAG_CURRENT_VECTORSTORE = None

def load_document_split_vectorstore(file_path):
    global RAG_CURRENT_FILE, RAG_EMBED, RAG_CURRENT_VECTORSTORE
    from langchain.text_splitter import RecursiveCharacterTextSplitter
    from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings
    from langchain_community.vectorstores import Chroma, FAISS
    from langchain_community.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
    # assert RAG_EMBED is not None
    splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=50)
    if file_path.endswith('.pdf'):
        loader = PyPDFLoader(file_path)
    elif file_path.endswith('.docx'):
        loader = Docx2txtLoader(file_path)
    elif file_path.endswith('.txt'):
        loader = TextLoader(file_path)
    splits = loader.load_and_split(splitter)
    RAG_CURRENT_VECTORSTORE = FAISS.from_texts(texts=[s.page_content for s in splits], embedding=get_rag_embeddings())
    return RAG_CURRENT_VECTORSTORE


def docs_to_rag_context(docs: List[str]):
    contexts = "\n".join([d.page_content for d in docs])
    context = f"""Answer the following query exclusively based on the information provided in the document above. \
If the information is not found, please say so instead of making up facts! Remember to answer the question in the same language as the user query!
###
{contexts}
###


"""
    return context

def maybe_get_doc_context(message, file_input, rag_num_docs: Optional[int] = 3):
    global RAG_CURRENT_FILE, RAG_EMBED, RAG_CURRENT_VECTORSTORE
    doc_context = None
    if file_input is not None:
        assert os.path.exists(file_input), f"not found: {file_input}"
        if file_input == RAG_CURRENT_FILE:
            # reuse
            vectorstore = RAG_CURRENT_VECTORSTORE
            print(f'Reuse vectorstore: {file_input}')
        else:
            vectorstore = load_document_split_vectorstore(file_input)
            print(f'New vectorstore: {RAG_CURRENT_FILE} {file_input}')
            RAG_CURRENT_FILE = file_input
        docs = vectorstore.similarity_search(message, k=rag_num_docs)
        doc_context = docs_to_rag_context(docs)
    return doc_context

# ######### RAG PREPARE


# ============ CONSTANT ============
# https://github.com/gradio-app/gradio/issues/884
MODEL_NAME = "SeaLLM-7B"
MODEL_NAME = str(os.environ.get("MODEL_NAME", "SeaLLM-7B"))

MODEL_TITLE = """
<div class="container" style="
    align-items: center;
    justify-content: center;
    display: flex;
">  
    <div class="image" >
        <img src="file/seal_logo.png" style="
            max-width: 10em;
            max-height: 5%;
            height: 3em;
            width: 3em;
            float: left;
            margin-left: auto;
        ">
    </div>
    <div class="text" style="
        padding-left: 20px;
        padding-top: 1%;
        float: left;
    ">
        <h1 style="font-size: xx-large">SeaLLMs - Large Language Models for Southeast Asia</h1>
    </div>
</div>
"""

MODEL_TITLE = """
<img src="file/seal_logo.png" style="
    max-width: 10em;
    max-height: 5%;
    height: 3em;
    width: 3em;
">
<div class="text" style="
loat: left;
padding-bottom: 2%;
">
SeaLLMs - Large Language Models for Southeast Asia
</div>
"""

"""
Somehow cannot add image here
<div class="image" >
    <img src="file/seal_logo.png" style="
        max-width: 10em;
        max-height: 5%;
        height: 3em;
        width: 3em;
        float: left;
        margin-left: auto;
    ">
</div>
"""

MODEL_DESC = f"""
<div style='display:flex; gap: 0.25rem; '>
<a href='https://github.com/damo-nlp-sg/seallms'><img src='https://img.shields.io/badge/Github-Code-success'></a>
<a href='https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a> 
<a href='https://huggingface.co/SeaLLMs/SeaLLM-7B-v2'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a> 
<a href='https://arxiv.org/pdf/2312.00738.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a>
</div>
<span style="font-size: larger">
<a href="https://huggingface.co/SeaLLMs/SeaLLM-7B-v2" target="_blank">{MODEL_NAME}-v2</a> - a helpful assistant for Southeast Asian Languages  🇬🇧 🇻🇳 🇮🇩 🇹🇭 🇲🇾 🇰🇭 🇱🇦 🇵🇭 🇲🇲.
Explore <a href="https://huggingface.co/SeaLLMs/SeaLLM-7B-v2" target="_blank">our article</a> for more.
</span>
<br>
<span>
<span style="color: red">NOTE: The chatbot may produce false and harmful content and does not have up-to-date knowledge.</span> 
By using our service, you are required to agree to our <a href="https://huggingface.co/SeaLLMs/SeaLLM-Chat-13b/blob/main/LICENSE" target="_blank" style="color: red">Terms Of Use</a>, which includes 
not to use our service to generate any harmful, inappropriate or illegal content. 
The service collects user dialogue data for testing and improvement under 
<a href="https://creativecommons.org/licenses/by/4.0/">(CC-BY)</a> or similar license. So do not enter any personal information!
</span>
""".strip()


cite_markdown = """
## Citation
If you find our project useful, hope you can star our repo and cite our paper as follows:
```
@article{damonlpsg2023seallm,
  author = {Xuan-Phi Nguyen*, Wenxuan Zhang*, Xin Li*, Mahani Aljunied*, Zhiqiang Hu, Chenhui Shen^, Yew Ken Chia^, Xingxuan Li, Jianyu Wang, Qingyu Tan, Liying Cheng, Guanzheng Chen, Yue Deng, Sen Yang, Chaoqun Liu, Hang Zhang, Lidong Bing},
  title = {SeaLLMs - Large Language Models for Southeast Asia},
  year = 2023,
}
```
"""

path_markdown = """
#### Model path:
{model_path}
"""



# ! ==================================================================

set_documentation_group("component")


RES_PRINTED = False


@document()
class ChatBot(gr.Chatbot):
    def _postprocess_chat_messages(
        self, chat_message
    ):
        x = super()._postprocess_chat_messages(chat_message)
        # if isinstance(x, str):
        #     x = x.strip().replace("\n", "<br>")
        return x


from gradio.components import Button
from gradio.events import Dependency, EventListenerMethod

# replace events so that submit button is disabled during generation, if stop_btn not found
# this prevent weird behavior
def _setup_stop_events(
    self, event_triggers: list[EventListenerMethod], event_to_cancel: Dependency
) -> None:
    from gradio.components import State
    event_triggers = event_triggers if isinstance(event_triggers, (list, tuple)) else [event_triggers]
    if self.stop_btn and self.is_generator:
        if self.submit_btn:
            for event_trigger in event_triggers:
                event_trigger(
                    lambda: (
                        Button(visible=False),
                        Button(visible=True),
                    ),
                    None,
                    [self.submit_btn, self.stop_btn],
                    api_name=False,
                    queue=False,
                )
            event_to_cancel.then(
                lambda: (Button(visible=True), Button(visible=False)),
                None,
                [self.submit_btn, self.stop_btn],
                api_name=False,
                queue=False,
            )
        else:
            for event_trigger in event_triggers:
                event_trigger(
                    lambda: Button(visible=True),
                    None,
                    [self.stop_btn],
                    api_name=False,
                    queue=False,
                )
            event_to_cancel.then(
                lambda: Button(visible=False),
                None,
                [self.stop_btn],
                api_name=False,
                queue=False,
            )
        self.stop_btn.click(
            None,
            None,
            None,
            cancels=event_to_cancel,
            api_name=False,
        )
    else:
        if self.submit_btn:
            for event_trigger in event_triggers:
                event_trigger(
                    lambda: Button(interactive=False),
                    None,
                    [self.submit_btn],
                    api_name=False,
                    queue=False,
                )
            event_to_cancel.then(
                lambda: Button(interactive=True),
                None,
                [self.submit_btn],
                api_name=False,
                queue=False,
            )
    # upon clear, cancel the submit event as well
    if self.clear_btn:
        self.clear_btn.click(
            lambda: ([], [], None, Button(interactive=True)),
            None,
            [self.chatbot, self.chatbot_state, self.saved_input, self.submit_btn],
            queue=False,
            api_name=False,
            cancels=event_to_cancel,
        )

# TODO: reconfigure clear button as stop and clear button
def _setup_events(self) -> None:
    from gradio.components import State
    has_on = False
    try:
        from gradio.events import Dependency, EventListenerMethod, on
        has_on = True
    except ImportError as ie:
        has_on = False
    submit_fn = self._stream_fn if self.is_generator else self._submit_fn

    def update_time(c_time, chatbot_state):
        # if chatbot_state is empty, register a new conversaion with the current timestamp
        # assert len(chatbot_state) > 0, f'empty chatbot state'
        if len(chatbot_state) <= 1:
            return gr.Number(value=time.time(), label='current_time', visible=False), chatbot_state
        # elif len(chatbot_state) == 1:
        #     # assert chatbot_state[-1][-1] is None, f'invalid [[message, None]] , got {chatbot_state}'
        #     return gr.Number(value=time.time(), label='current_time', visible=False), chatbot_state
        else:
            return c_time, chatbot_state

    if has_on:
        # new version
        submit_triggers = (
            [self.textbox.submit, self.submit_btn.click]
            if self.submit_btn
            else [self.textbox.submit]
        )
        submit_event = (
            on(
                submit_triggers,
                self._clear_and_save_textbox,
                [self.textbox],
                [self.textbox, self.saved_input],
                api_name=False,
                queue=False,
            )
            .then(
                self._display_input,
                [self.saved_input, self.chatbot_state],
                [self.chatbot, self.chatbot_state],
                api_name=False,
                queue=False,
            )
            .then(
                update_time,
                [self.additional_inputs[-1], self.chatbot_state],
                [self.additional_inputs[-1], self.chatbot_state],
                api_name=False,
                queue=False,
            )
            .then(
                submit_fn,
                [self.saved_input, self.chatbot_state] + self.additional_inputs,
                [self.chatbot, self.chatbot_state],
                api_name=False,
            )
        )
        self._setup_stop_events(submit_triggers, submit_event)
    else:
        raise ValueError(f'Better install new gradio version than 3.44.0')

    if self.retry_btn:
        retry_event = (
            self.retry_btn.click(
                self._delete_prev_fn,
                [self.chatbot_state],
                [self.chatbot, self.saved_input, self.chatbot_state],
                api_name=False,
                queue=False,
            )
            .then(
                self._display_input,
                [self.saved_input, self.chatbot_state],
                [self.chatbot, self.chatbot_state],
                api_name=False,
                queue=False,
            )
            .then(
                submit_fn,
                [self.saved_input, self.chatbot_state] + self.additional_inputs,
                [self.chatbot, self.chatbot_state],
                api_name=False,
            )
        )
        self._setup_stop_events([self.retry_btn.click], retry_event)

    if self.undo_btn:
        self.undo_btn.click(
            self._delete_prev_fn,
            [self.chatbot_state],
            [self.chatbot, self.saved_input, self.chatbot_state],
            api_name=False,
            queue=False,
        ).then(
            lambda x: x,
            [self.saved_input],
            [self.textbox],
            api_name=False,
            queue=False,
        )

    # Reconfigure clear_btn to stop and clear text box


def _display_input(
        self, message: str, history: List[List[Union[str, None]]]
    ) -> Tuple[List[List[Union[str, None]]], List[List[list[Union[str, None]]]]]:
    if message is not None and message.strip() != "":
        history.append([message, None])
    return history, history


async def _stream_fn(
    self,
    message: str,
    history_with_input,
    request: Request,
    *args,
) -> AsyncGenerator:
    history = history_with_input[:-1]
    inputs, _, _ = special_args(
        self.fn, inputs=[message, history, *args], request=request
    )

    if self.is_async:
        generator = self.fn(*inputs)
    else:
        generator = await anyio.to_thread.run_sync(
            self.fn, *inputs, limiter=self.limiter
        )
        generator = SyncToAsyncIterator(generator, self.limiter)
    try:
        first_response = await async_iteration(generator)
        update = history + [[message, first_response]]
        yield update, update
    except StopIteration:
        update = history + [[message, None]]
        yield update, update
    except Exception as e:
        yield history, history
        raise e

    try:
        async for response in generator:
            update = history + [[message, response]]
            yield update, update
    except Exception as e:
        # if "invalid" in str(e):
        #     yield history, history
        #     raise e
        # else:
        #     raise e
        yield history, history
        raise e




# replace
gr.ChatInterface._setup_stop_events = _setup_stop_events
gr.ChatInterface._setup_events = _setup_events
gr.ChatInterface._display_input = _display_input
gr.ChatInterface._stream_fn = _stream_fn


@document()
class CustomTabbedInterface(gr.Blocks):
    def __init__(
        self,
        interface_list: list[gr.Interface],
        tab_names: Optional[list[str]] = None,
        title: Optional[str] = None,
        description: Optional[str] = None,
        theme: Optional[gr.Theme] = None,
        analytics_enabled: Optional[bool] = None,
        css: Optional[str] = None,
    ):
        """
        Parameters:
            interface_list: a list of interfaces to be rendered in tabs.
            tab_names: a list of tab names. If None, the tab names will be "Tab 1", "Tab 2", etc.
            title: a title for the interface; if provided, appears above the input and output components in large font. Also used as the tab title when opened in a browser window.
            analytics_enabled: whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable or default to True.
            css: custom css or path to custom css file to apply to entire Blocks
        Returns:
            a Gradio Tabbed Interface for the given interfaces
        """
        super().__init__(
            title=title or "Gradio",
            theme=theme,
            analytics_enabled=analytics_enabled,
            mode="tabbed_interface",
            css=css,
        )
        self.description = description
        if tab_names is None:
            tab_names = [f"Tab {i}" for i in range(len(interface_list))]
        with self:
            if title:
                gr.Markdown(
                    f"<h1 style='text-align: center; margin-bottom: 1rem'>{title}</h1>"
                )
            if description:
                gr.Markdown(description)
            with gr.Tabs():
                for interface, tab_name in zip(interface_list, tab_names):
                    with gr.Tab(label=tab_name):
                        interface.render()


def vllm_abort(self):
    sh = self.llm_engine.scheduler
    for g in (sh.waiting + sh.running + sh.swapped):
        sh.abort_seq_group(g.request_id)
    from vllm.sequence import SequenceStatus
    scheduler = self.llm_engine.scheduler
    for state_queue in [scheduler.waiting, scheduler.running, scheduler.swapped]:
        for seq_group in state_queue:
            # if seq_group.request_id == request_id:
            # Remove the sequence group from the state queue.
            state_queue.remove(seq_group)
            for seq in seq_group.seqs:
                if seq.is_finished():
                    continue
                scheduler.free_seq(seq, SequenceStatus.FINISHED_ABORTED)


def _vllm_run_engine(self: Any, use_tqdm: bool = False) -> Dict[str, Any]:
    from vllm.outputs import RequestOutput
    # Initialize tqdm.
    if use_tqdm:
        num_requests = self.llm_engine.get_num_unfinished_requests()
        pbar = tqdm(total=num_requests, desc="Processed prompts")
    # Run the engine.
    outputs: Dict[str, RequestOutput] = {}
    while self.llm_engine.has_unfinished_requests():
        step_outputs = self.llm_engine.step()
        for output in step_outputs:
            outputs[output.request_id] = output
        if len(outputs) > 0:
            yield outputs



def vllm_generate_stream(
    self: Any,
    prompts: Optional[Union[str, List[str]]] = None,
    sampling_params: Optional[Any] = None,
    prompt_token_ids: Optional[List[List[int]]] = None,
    use_tqdm: bool = False,
) -> Dict[str, Any]:
    """Generates the completions for the input prompts.

    NOTE: This class automatically batches the given prompts, considering
    the memory constraint. For the best performance, put all of your prompts
    into a single list and pass it to this method.

    Args:
        prompts: A list of prompts to generate completions for.
        sampling_params: The sampling parameters for text generation. If
            None, we use the default sampling parameters.
        prompt_token_ids: A list of token IDs for the prompts. If None, we
            use the tokenizer to convert the prompts to token IDs.
        use_tqdm: Whether to use tqdm to display the progress bar.

    Returns:
        A list of `RequestOutput` objects containing the generated
        completions in the same order as the input prompts.
    """
    from vllm import LLM, SamplingParams
    if prompts is None and prompt_token_ids is None:
        raise ValueError("Either prompts or prompt_token_ids must be "
                            "provided.")
    if isinstance(prompts, str):
        # Convert a single prompt to a list.
        prompts = [prompts]
    if prompts is not None and prompt_token_ids is not None:
        if len(prompts) != len(prompt_token_ids):
            raise ValueError("The lengths of prompts and prompt_token_ids "
                                "must be the same.")
    if sampling_params is None:
        # Use default sampling params.
        sampling_params = SamplingParams()

    # Add requests to the engine.
    if prompts is not None:
        num_requests = len(prompts)
    else:
        num_requests = len(prompt_token_ids)
    for i in range(num_requests):
        prompt = prompts[i] if prompts is not None else None
        if prompt_token_ids is None:
            token_ids = None
        else:
            token_ids = prompt_token_ids[i]
        self._add_request(prompt, sampling_params, token_ids)
    # return self._run_engine(use_tqdm)
    yield from _vllm_run_engine(self, use_tqdm)



# ! avoid saying 
# LANG_BLOCK_MESSAGE = """Sorry, the language you have asked is currently not supported. If you have questions in other supported languages, I'll be glad to help. \
# Please also consider clearing the chat box for a better experience."""

# KEYWORD_BLOCK_MESSAGE = "Sorry, I cannot fulfill your request. If you have any unrelated question, I'll be glad to help."

LANG_BLOCK_MESSAGE = """Unsupported language."""

KEYWORD_BLOCK_MESSAGE = "Invalid request."


def _detect_lang(text):
    # Disable language that may have safety risk
    from langdetect import detect as detect_lang
    dlang = None
    try:
        dlang = detect_lang(text)
    except Exception as e:
        if "No features in text." in str(e):
            return "en"
        else:
            return "zh"
    return dlang


def block_lang(
    message: str, 
    history: List[Tuple[str, str]] = None,
) -> str:
    # relieve history base block
    if len(BLOCK_LANGS) == 0:
        return False
    
    if LANG_BLOCK_HISTORY and history is not None and any((LANG_BLOCK_MESSAGE in x[1].strip()) for x in history):
        return True
    else:
        _lang = _detect_lang(message)
        if _lang in BLOCK_LANGS:
            print(f'Detect blocked {_lang}: {message}')
            return True
        else:
            return False


def safety_check(text, history=None, ) -> Optional[str]:
    """
    Despite our effort in safety tuning and red teaming, our models may still generate harmful or illegal content.
    This provides an additional security measure to enhance safety and compliance with local regulations.
    """
    if len(KEYWORDS) > 0 and any(x in text.lower() for x in KEYWORDS):
        return KEYWORD_BLOCK_MESSAGE
    
    if len(BLOCK_LANGS) > 0:
        if block_lang(text, history):
            return LANG_BLOCK_MESSAGE

    return None



TURN_TEMPLATE = "<|im_start|>{role}\n{content}</s>"
TURN_PREFIX = "<|im_start|>{role}\n"


def chatml_chat_convo_format(conversations, add_assistant_prefix: bool, default_system=SYSTEM_PROMPT_1):
    if conversations[0]['role'] != 'system':
        conversations = [{"role": "system", "content": default_system}] + conversations
    text = ''
    for turn_id, turn in enumerate(conversations):
        prompt = TURN_TEMPLATE.format(role=turn['role'], content=turn['content'])
        text += prompt
    if add_assistant_prefix:
        prompt = TURN_PREFIX.format(role='assistant')
        text += prompt    
    return text


def chatml_format(message, history=None, system_prompt=None):
    conversations = []
    system_prompt = system_prompt or "You are a helpful assistant."
    if history is not None and len(history) > 0:
        for i, (prompt, res) in enumerate(history):
            conversations.append({"role": "user", "content": prompt.strip()})
            conversations.append({"role": "assistant", "content": res.strip()})
    conversations.append({"role": "user", "content": message.strip()})
    return chatml_chat_convo_format(conversations, True, default_system=system_prompt)


def debug_chat_response_stream_multiturn(message, history):
    message_safety = safety_check(message, history=history)
    if message_safety is not None:
        # yield message_safety
        raise gr.Error(message_safety)
    
    message = "This is a debugging message"
    for i in range(len(message)):
        time.sleep(0.05)
        yield message[:i]



def chat_response_stream_multiturn(
    message: str, 
    history: List[Tuple[str, str]], 
    temperature: float, 
    max_tokens: int, 
    frequency_penalty: float,
    presence_penalty: float,
    system_prompt: Optional[str] = SYSTEM_PROMPT_1,
    current_time: Optional[float] = None,
    # profile: Optional[gr.OAuthProfile] = None,
) -> str:
    """
    gr.Number(value=temperature, label='Temperature (higher -> more random)'), 
            gr.Number(value=max_tokens, label='Max generated tokens (increase if want more generation)'), 
            gr.Number(value=frequence_penalty, label='Frequency penalty (> 0 encourage new tokens over repeated tokens)'), 
            gr.Number(value=presence_penalty, label='Presence penalty (> 0 encourage new tokens, < 0 encourage existing tokens)'), 
            gr.Textbox(value=sys_prompt, label='System prompt', lines=8, interactive=False),
            gr.Number(value=0, label='current_time', visible=False), 
    """
    global LOG_FILE, LOG_PATH
    if DEBUG:
        yield from debug_chat_response_stream_multiturn(message, history)
        return
    from vllm import LLM, SamplingParams
    """Build multi turn

    message is incoming prompt
    history don't have the current messauge
    """
    global llm, RES_PRINTED
    assert llm is not None
    assert system_prompt.strip() != '', f'system prompt is empty'
    # is_by_pass = False if profile is None else profile.username in BYPASS_USERS
    is_by_pass = False
    
    tokenizer = llm.get_tokenizer()
    # force removing all 
    vllm_abort(llm)

    temperature = float(temperature)
    frequency_penalty = float(frequency_penalty)
    max_tokens = int(max_tokens)

    message = message.strip()

    if GET_LOG_CMD != "" and message.strip() == GET_LOG_CMD:
        print_log_file()
        yield "Finish printed log. Please clear the chatbox now."
        return 

    if len(message) == 0:
        raise gr.Error("The message cannot be empty!")

    message_safety = safety_check(message, history=history)
    if message_safety is not None and not is_by_pass:
        # yield message_safety
        raise gr.Error(message_safety)

    # history will be appended with message later on
    
    full_prompt = chatml_format(message.strip(), history=history, system_prompt=system_prompt)
    print(full_prompt)

    if len(tokenizer.encode(full_prompt)) >= 4050:
        raise gr.Error(f"Conversation or prompt is too long, please clear the chatbox or try shorter input.")

    sampling_params = SamplingParams(
        temperature=temperature, 
        max_tokens=max_tokens,
        frequency_penalty=frequency_penalty,
        presence_penalty=presence_penalty,
        # stop=['<s>', '</s>', '<<SYS>>', '<</SYS>>', '[INST]', '[/INST]'],
        stop=['<s>', '</s>', '<|im_start|>', '<|im_end|>'],
    )
    cur_out = None

    for j, gen in enumerate(vllm_generate_stream(llm, full_prompt, sampling_params)):
        if cur_out is not None and (STREAM_YIELD_MULTIPLE < 1 or j % STREAM_YIELD_MULTIPLE == 0) and j > 0:
            # cur_out = cur_out.replace("\\n", "\n")
            
            # optionally check safety, and respond
            if STREAM_CHECK_MULTIPLE > 0 and j % STREAM_CHECK_MULTIPLE == 0:
                message_safety = safety_check(cur_out, history=None)
                if message_safety is not None and not is_by_pass:
                    # yield message_safety
                    raise gr.Error(message_safety)
                    # return

            yield cur_out
        assert len(gen) == 1, f'{gen}'
        item = next(iter(gen.values()))
        cur_out = item.outputs[0].text
        #cur_out = "Our system is under maintenance, will be back soon!"
        if j >= max_tokens - 2:
            gr.Warning(f'The response hits limit of {max_tokens} tokens. Consider increase the max tokens parameter in the Additional Inputs.')
    
    # TODO: use current_time to register conversations, accoriding history and cur_out
    history_str = format_conversation(history + [[message, cur_out]])
    print(f'@@@@@@@@@@\n{history_str}\n##########\n')

    maybe_log_conv_file(current_time, history, message, cur_out, temperature=temperature, frequency_penalty=frequency_penalty)
    
    if cur_out is not None and "\\n" in cur_out:
        print(f'double slash-n in cur_out:\n{cur_out}')
        cur_out = cur_out.replace("\\n", "\n")

    if cur_out is not None:
        yield cur_out
    
    message_safety = safety_check(cur_out, history=None)
    if message_safety is not None and not is_by_pass:
        # yield message_safety
        raise gr.Error(message_safety)
        # return
    


def chat_response_stream_rag_multiturn(
    message: str, 
    history: List[Tuple[str, str]], 
    file_input: str,
    temperature: float,
    max_tokens: int,
    # frequency_penalty: float,
    # presence_penalty: float,
    system_prompt: Optional[str] = SYSTEM_PROMPT_1,
    current_time: Optional[float] = None,
    rag_num_docs: Optional[int] = 3,
):
    message = message.strip()
    frequency_penalty = FREQUENCE_PENALTY
    presence_penalty = PRESENCE_PENALTY
    if len(message) == 0:
        raise gr.Error("The message cannot be empty!")
    doc_context = maybe_get_doc_context(message, file_input, rag_num_docs=rag_num_docs)
    if doc_context is not None:
        message = f"{doc_context}\n\n{message}"
    yield from chat_response_stream_multiturn(
        message, history, temperature, max_tokens, frequency_penalty,
        presence_penalty, system_prompt, current_time
    )


def debug_generate_free_form_stream(message):
    output = " This is a debugging message...."
    for i in range(len(output)):
        time.sleep(0.05)
        yield message + output[:i]


def generate_free_form_stream(
    message: str, 
    temperature: float, 
    max_tokens: int, 
    frequency_penalty: float,
    presence_penalty: float,
    stop_strings: str = '<s>,</s>,<|im_start|>,<|im_end|>',
    current_time: Optional[float] = None,
) -> str:
    global LOG_FILE, LOG_PATH
    if DEBUG:
        yield from debug_generate_free_form_stream(message)
        return
    from vllm import LLM, SamplingParams
    """Build multi turn
    """
    global llm, RES_PRINTED
    assert llm is not None
    tokenizer = llm.get_tokenizer()
    # force removing all 
    vllm_abort(llm)

    temperature = float(temperature)
    frequency_penalty = float(frequency_penalty)
    max_tokens = int(max_tokens)

    stop_strings = [x.strip() for x in stop_strings.strip().split(",")]
    stop_strings = list(set(stop_strings + ['</s>', '<|im_start|>']))

    sampling_params = SamplingParams(
        temperature=temperature, 
        max_tokens=max_tokens,
        frequency_penalty=frequency_penalty,
        presence_penalty=presence_penalty,
        stop=stop_strings,
        # ignore_eos=True,
    )

    # full_prompt = message
    if len(message) == 0:
        raise gr.Error("The message cannot be empty!")
    
    message_safety = safety_check(message)
    if message_safety is not None:
        raise gr.Error(message_safety)

    if len(tokenizer.encode(message)) >= 4050:
        raise gr.Error(f"Prompt is too long!")
    
    cur_out = None
    for j, gen in enumerate(vllm_generate_stream(llm, message, sampling_params)):
        if cur_out is not None and (STREAM_YIELD_MULTIPLE < 1 or j % STREAM_YIELD_MULTIPLE == 0) and j > 0:
            # optionally check safety, and respond
            if STREAM_CHECK_MULTIPLE > 0 and j % STREAM_CHECK_MULTIPLE == 0:
                message_safety = safety_check(cur_out, history=None)
                if message_safety is not None:
                    raise gr.Error(message_safety)
            yield message + cur_out
        assert len(gen) == 1, f'{gen}'
        item = next(iter(gen.values()))
        cur_out = item.outputs[0].text
        #cur_out = "Our system is under maintenance, will be back soon!"
        if j >= max_tokens - 2:
            gr.Warning(f'The response hits limit of {max_tokens} tokens. Consider increase the max tokens parameter in the Additional Inputs.')

    if cur_out is not None:
        yield message + cur_out
    
    message_safety = safety_check(message + cur_out, history=None)
    if message_safety is not None:
        raise gr.Error(message_safety)




def maybe_log_conv_file(current_time, history, message, response, **kwargs):
    global LOG_FILE
    if LOG_FILE is not None:
        my_history = history + [[message, response]]
        obj = {
            'key': str(current_time),
            'history': my_history
        }
        for k, v in kwargs.items():
            obj[k] = v
        log_ = json.dumps(obj, ensure_ascii=False)
        LOG_FILE.write(log_ + "\n")
        LOG_FILE.flush()
        print(f'Wrote {obj["key"]} to {LOG_PATH}')


def format_conversation(history):
    _str = '\n'.join([
        (
            f'<<<User>>> {h[0]}\n'
            f'<<<Asst>>> {h[1]}'
        )
        for h in history
    ])
    return _str


def aggregate_convos():
    from datetime import datetime
    global LOG_FILE, DATA_SET_REPO_PATH, SAVE_LOGS
    assert os.path.exists(LOG_PATH), f'{LOG_PATH} not found'
    convos = None
    irregular_count = 1
    with open(LOG_PATH, 'r', encoding='utf-8') as f:
        convos = {}
        for i, l in enumerate(f):
            if l:
                item = json.loads(l)
                key = item['key']
                try:
                    key = float(key)
                except Exception as e:
                    key = -1
                if key > 0.0:
                    item_key = datetime.fromtimestamp(key).strftime("%Y-%m-%d %H:%M:%S")
                else:
                    key = item_key = f'e{irregular_count}'
                    irregular_count += 1
                item['key'] = item_key
                convos[key] = item
    return convos

def maybe_upload_to_dataset():
    from datetime import datetime
    global LOG_FILE, DATA_SET_REPO_PATH, SAVE_LOGS
    if SAVE_LOGS and os.path.exists(LOG_PATH) and DATA_SET_REPO_PATH != "":
        convos = aggregate_convos()
        AGG_LOG_PATH = LOG_PATH + ".agg.json"
        with open(AGG_LOG_PATH, 'w', encoding='utf-8') as fo:
            json.dump(convos, fo, indent=4, ensure_ascii=False)
        print(f'Saved aggregated json to {AGG_LOG_PATH}')
        try:
            from huggingface_hub import upload_file
            print(f'upload {AGG_LOG_PATH} to {DATA_SET_REPO_PATH}')
            upload_file(
                path_or_fileobj=AGG_LOG_PATH,
                path_in_repo=os.path.basename(AGG_LOG_PATH),
                repo_id=DATA_SET_REPO_PATH,
                token=HF_TOKEN,
                repo_type="dataset",
                create_pr=True
            )
        except Exception as e:
            print(f'Failed to save to repo: {DATA_SET_REPO_PATH}|{str(e)}')


def print_log_file():
    global LOG_FILE, LOG_PATH
    if SAVE_LOGS and os.path.exists(LOG_PATH):
        with open(LOG_PATH, 'r', encoding='utf-8') as f:
            convos = aggregate_convos()
            print(f'Printing log from {LOG_PATH}')
            items = list(convos.items())
            for k, v in items[-10:]:
                history = v.pop('history')
                print(f'######--{v}--#####')
                _str = format_conversation(history)
                print(_str)
        maybe_upload_to_dataset()


def debug_chat_response_echo(
    message: str, 
    history: List[Tuple[str, str]], 
    temperature: float = 0.0, 
    max_tokens: int = 4096, 
    frequency_penalty: float = 0.4,
    presence_penalty: float = 0.0,
    current_time: Optional[float] = None,
    system_prompt: str = SYSTEM_PROMPT_1,
) -> str:
    global LOG_FILE
    import time
    time.sleep(0.5)

    if message.strip() == GET_LOG_CMD:
        print_log_file()
        yield "Finish printed log."
        return 

    for i in range(len(message)):
        yield f"repeat: {current_time} {message[:i + 1]}"
    
    cur_out = f"repeat: {current_time} {message}"
    maybe_log_conv_file(current_time, history, message, cur_out, temperature=temperature, frequency_penalty=frequency_penalty)


def check_model_path(model_path) -> str:
    assert os.path.exists(model_path), f'{model_path} not found'
    ckpt_info = "None"
    if os.path.isdir(model_path):
        if os.path.exists(f'{model_path}/info.txt'):
            with open(f'{model_path}/info.txt', 'r') as f:
                ckpt_info = f.read()
                print(f'Checkpoint info:\n{ckpt_info}\n-----')
        else:
            print(f'info.txt not found in {model_path}')
        print(f'model path dir: {list(os.listdir(model_path))}')
    
    return ckpt_info


def maybe_delete_folder():
    if IS_DELETE_FOLDER and DOWNLOAD_SNAPSHOT:
        import shutil
        print(f'DELETE ALL FILES IN {DELETE_FOLDER}')
        for filename in os.listdir(DELETE_FOLDER):
            file_path = os.path.join(DELETE_FOLDER, filename)
            try:
                if os.path.isfile(file_path) or os.path.islink(file_path):
                    os.unlink(file_path)
                elif os.path.isdir(file_path):
                    shutil.rmtree(file_path)
            except Exception as e:
                print('Failed to delete %s. Reason: %s' % (file_path, e))


AGREE_POP_SCRIPTS = """
async () => {
    alert("To use our service, you are required to agree to the following terms:\\nYou must not use our service to generate any harmful, unethical or illegal content that violates local and international laws, including but not limited to hate speech, violence and deception.\\nThe service may collect user dialogue data for performance improvement, and reserves the right to distribute it under CC-BY or similar license. So do not enter any personal information!");
}
"""

def debug_file_function(
        files: Union[str, List[str]],
        prompt_mode: str,
        temperature: float, 
        max_tokens: int, 
        frequency_penalty: float,
        presence_penalty: float,
        stop_strings: str = "[STOP],<s>,</s>",
        current_time: Optional[float] = None,          
):
    """This is only for debug purpose"""
    files = files if isinstance(files, list) else [files]
    print(files)
    filenames = [f.name for f in files]
    all_items = []
    for fname in filenames:
        print(f'Reading {fname}')
        with open(fname, 'r', encoding='utf-8') as f:
            items = json.load(f)
        assert isinstance(items, list), f'invalid items from {fname} not list'
        all_items.extend(items)
    print(all_items)
    print(f'{prompt_mode} / {temperature} / {max_tokens}, {frequency_penalty}, {presence_penalty}')
    save_path = "./test.json"
    with open(save_path, 'w', encoding='utf-8') as f:
        json.dump(all_items, f, indent=4, ensure_ascii=False)

    for x in all_items:
        x['response'] = "Return response"
    
    print_items = all_items[:1]
    # print_json = json.dumps(print_items, indent=4, ensure_ascii=False)
    return save_path, print_items


def validate_file_item(filename, index, item: Dict[str, str]):
    """
    check safety for items in files
    """
    message = item['prompt'].strip()

    if len(message) == 0:
        raise gr.Error(f'Prompt {index} empty')
    
    message_safety = safety_check(message, history=None)
    if message_safety is not None:
        raise gr.Error(f'Prompt {index} invalid: {message_safety}')
    
    tokenizer = llm.get_tokenizer() if llm is not None else None
    if tokenizer is None or len(tokenizer.encode(message)) >= BATCH_INFER_MAX_PROMPT_TOKENS:
        raise gr.Error(f"Prompt {index} too long, should be less than {BATCH_INFER_MAX_PROMPT_TOKENS} tokens")


def read_validate_json_files(files: Union[str, List[str]]):
    files = files if isinstance(files, list) else [files]
    filenames = [f.name for f in files]
    all_items = []
    for fname in filenames:
        # check each files
        print(f'Reading {fname}')
        with open(fname, 'r', encoding='utf-8') as f:
            items = json.load(f)
        assert isinstance(items, list), f'Data {fname} not list'
        assert all(isinstance(x, dict) for x in items), f'item in input file not list'
        assert all("prompt" in x for x in items), f'key prompt should be in dict item of input file'

        for i, x in enumerate(items):
            validate_file_item(fname, i, x)

        all_items.extend(items)

    if len(all_items) > BATCH_INFER_MAX_ITEMS:
        raise gr.Error(f"Num samples {len(all_items)} > {BATCH_INFER_MAX_ITEMS} allowed.")
    
    return all_items, filenames


def remove_gradio_cache(exclude_names=None):
    """remove gradio cache to avoid flooding"""
    import shutil
    for root, dirs, files in os.walk('/tmp/gradio/'):
        for f in files:
            # if not any(f in ef for ef in except_files):
            if exclude_names is None or not any(ef in f for ef in exclude_names):
                print(f'Remove: {f}')
                os.unlink(os.path.join(root, f))
        # for d in dirs:
        #     # if not any(d in ef for ef in except_files):
        #     if exclude_names is None or not any(ef in d for ef in exclude_names):
        #         print(f'Remove d: {d}')
        #         shutil.rmtree(os.path.join(root, d))


def maybe_upload_batch_set(pred_json_path):
    global LOG_FILE, DATA_SET_REPO_PATH, SAVE_LOGS

    if SAVE_LOGS and DATA_SET_REPO_PATH != "":
        try:
            from huggingface_hub import upload_file
            path_in_repo = "misc/" + os.path.basename(pred_json_path).replace(".json", f'.{time.time()}.json')
            print(f'upload {pred_json_path} to {DATA_SET_REPO_PATH}//{path_in_repo}')
            upload_file(
                path_or_fileobj=pred_json_path,
                path_in_repo=path_in_repo,
                repo_id=DATA_SET_REPO_PATH,
                token=HF_TOKEN,
                repo_type="dataset",
                create_pr=True
            )
        except Exception as e:
            print(f'Failed to save to repo: {DATA_SET_REPO_PATH}|{str(e)}')


def free_form_prompt(prompt, history=None, system_prompt=None):
    return prompt

def batch_inference(
        files: Union[str, List[str]], 
        prompt_mode: str,
        temperature: float, 
        max_tokens: int, 
        frequency_penalty: float,
        presence_penalty: float,
        stop_strings: str = "[STOP],<s>,</s>,<|im_start|>",
        current_time: Optional[float] = None,
        system_prompt: Optional[str] = SYSTEM_PROMPT_1
):
    """
    Handle file upload batch inference
    
    """
    global LOG_FILE, LOG_PATH, DEBUG, llm, RES_PRINTED
    if DEBUG:
        return debug_file_function(
            files, prompt_mode, temperature, max_tokens, 
            presence_penalty, stop_strings, current_time)
    
    from vllm import LLM, SamplingParams
    assert llm is not None
    # assert system_prompt.strip() != '', f'system prompt is empty'

    stop_strings = [x.strip() for x in stop_strings.strip().split(",")]
    tokenizer = llm.get_tokenizer()
    # force removing all 
    # NOTE: need to make sure all cached items are removed!!!!!!!!!
    vllm_abort(llm)

    temperature = float(temperature)
    frequency_penalty = float(frequency_penalty)
    max_tokens = int(max_tokens)

    all_items, filenames = read_validate_json_files(files)

    # remove all items in /tmp/gradio/
    remove_gradio_cache(exclude_names=['upload_chat.json', 'upload_few_shot.json'])

    if prompt_mode == 'chat':
        prompt_format_fn = chatml_format
    elif prompt_mode == 'few-shot':
        from functools import partial
        # prompt_format_fn = partial(
        #     chatml_format, include_end_instruct=False
        # )
        prompt_format_fn = free_form_prompt 
    else:
        raise gr.Error(f'Wrong mode {prompt_mode}')

    full_prompts = [
        prompt_format_fn(
            x['prompt'], [], sys_prompt=system_prompt
        )
        for i, x in enumerate(all_items)
    ]
    print(f'{full_prompts[0]}\n')
    
    if any(len(tokenizer.encode(x)) >= 4090 for x in full_prompts):
        raise gr.Error(f"Some prompt is too long!")

    stop_seq = list(set(['<s>', '</s>', '<<SYS>>', '<</SYS>>', '[INST]', '[/INST]'] + stop_strings))
    sampling_params = SamplingParams(
        temperature=temperature, 
        max_tokens=max_tokens,
        frequency_penalty=frequency_penalty,
        presence_penalty=presence_penalty,
        stop=stop_seq
    )

    generated = llm.generate(full_prompts, sampling_params, use_tqdm=False)
    responses = [g.outputs[0].text for g in generated]
    #responses = ["Our system is under maintenance, will be back soon!" for g in generated]
    if len(responses) != len(all_items):
        raise gr.Error(f'inconsistent lengths {len(responses)} != {len(all_items)}')

    for res, item in zip(responses, all_items):
        item['response'] = res

    save_path = BATCH_INFER_SAVE_TMP_FILE
    os.makedirs(os.path.dirname(save_path), exist_ok=True)
    with open(save_path, 'w', encoding='utf-8') as f:
        json.dump(all_items, f, indent=4, ensure_ascii=False)

    # You need to upload save_path as a new timestamp file.
    maybe_upload_batch_set(save_path)
    
    print_items = all_items[:2]
    # print_json = json.dumps(print_items, indent=4, ensure_ascii=False)
    return save_path, print_items
    

# BATCH_INFER_MAX_ITEMS
FILE_UPLOAD_DESCRIPTION = f"""Upload JSON file as list of dict with < {BATCH_INFER_MAX_ITEMS} items, \
each item has `prompt` key. We put guardrails to enhance safety, so do not input any harmful content or personal information! Re-upload the file after every submit. See the examples below.
```
[ {{"id": 0, "prompt": "Hello world"}} ,  {{"id": 1, "prompt": "Hi there?"}}]
```
"""

CHAT_EXAMPLES = [
    ["Hãy giải thích thuyết tương đối rộng."],
    ["Tolong bantu saya menulis email ke lembaga pemerintah untuk mencari dukungan finansial untuk penelitian AI."],
    ["แนะนำ 10 จุดหมายปลายทางในกรุงเทพฯ"],
]


# performance items

def create_free_form_generation_demo():
    global short_model_path
    max_tokens = MAX_TOKENS
    temperature = TEMPERATURE
    frequence_penalty = FREQUENCE_PENALTY
    presence_penalty = PRESENCE_PENALTY

    introduction = """
### Free-form | Put any context string (like few-shot prompts)
    """

    with gr.Blocks() as demo_free_form:
        gr.Markdown(introduction)

        with gr.Row():
            txt = gr.Textbox(
                scale=4,
                lines=16,
                show_label=False,
                placeholder="Enter any free form text and submit",
                container=False,
            )
        with gr.Row():
            free_submit_button = gr.Button('Submit')
        with gr.Row():
            temp = gr.Number(value=temperature, label='Temperature', info="Higher -> more random")
            length = gr.Number(value=max_tokens, label='Max tokens', info='Increase if want more generation')
            freq_pen = gr.Number(value=frequence_penalty, label='Frequency penalty', info='> 0 encourage new tokens over repeated tokens')
            pres_pen = gr.Number(value=presence_penalty, label='Presence penalty', info='> 0 encourage new tokens, < 0 encourage existing tokens')
            stop_strings = gr.Textbox(value="<s>,</s>,<|im_start|>", label='Stop strings', info='Comma-separated string to stop generation only in FEW-SHOT mode', lines=1)

        free_submit_button.click(
            generate_free_form_stream, 
            [txt, temp, length, freq_pen, pres_pen, stop_strings], 
            txt
        )
    return demo_free_form



def create_file_upload_demo():
    temperature = TEMPERATURE
    frequence_penalty = FREQUENCE_PENALTY
    presence_penalty = PRESENCE_PENALTY
    max_tokens = MAX_TOKENS
    demo_file_upload = gr.Interface(
        batch_inference,
        inputs=[
            gr.File(file_count='single', file_types=['json']),
            gr.Radio(["chat", "few-shot"], value='chat', label="Chat or Few-shot mode", info="Chat's output more user-friendly, Few-shot's output more consistent with few-shot patterns."),
            gr.Number(value=temperature, label='Temperature', info="Higher -> more random"), 
            gr.Number(value=max_tokens, label='Max tokens', info='Increase if want more generation'), 
            gr.Number(value=frequence_penalty, label='Frequency penalty', info='> 0 encourage new tokens over repeated tokens'), 
            gr.Number(value=presence_penalty, label='Presence penalty', info='> 0 encourage new tokens, < 0 encourage existing tokens'), 
            gr.Textbox(value="<s>,</s>,<|im_start|>", label='Stop strings', info='Comma-separated string to stop generation only in FEW-SHOT mode', lines=1),
            gr.Number(value=0, label='current_time', visible=False), 
        ],
        outputs=[
            # "file",
            gr.File(label="Generated file"),
            # "json"
            gr.JSON(label='Example outputs (display 2 samples)')
        ],
        description=FILE_UPLOAD_DESCRIPTION,
        allow_flagging=False,
        examples=[
            ["upload_chat.json", "chat", 0.2, 1024, 0.5, 0, "<s>,</s>,<|im_start|>"],
            ["upload_few_shot.json", "few-shot", 0.2, 128, 0.5, 0, "<s>,</s>,<|im_start|>,\\n"]
        ],
        cache_examples=False,
    )
    return demo_file_upload


def create_chat_demo(title=None, description=None):
    sys_prompt = SYSTEM_PROMPT_1
    max_tokens = MAX_TOKENS
    temperature = TEMPERATURE
    frequence_penalty = FREQUENCE_PENALTY
    presence_penalty = PRESENCE_PENALTY

    demo_chat = gr.ChatInterface(
        chat_response_stream_multiturn,
        chatbot=ChatBot(
            label=MODEL_NAME,
            bubble_full_width=False,
            latex_delimiters=[
                { "left": "$", "right": "$", "display": False},
                { "left": "$$", "right": "$$", "display": True},
            ],
            show_copy_button=True,
        ),
        textbox=gr.Textbox(placeholder='Type message', lines=1, max_lines=128, min_width=200),
        submit_btn=gr.Button(value='Submit', variant="primary", scale=0),
        # ! consider preventing the stop button
        # stop_btn=None,
        title=title,
        description=description,
        additional_inputs=[
            gr.Number(value=temperature, label='Temperature (higher -> more random)'), 
            gr.Number(value=max_tokens, label='Max generated tokens (increase if want more generation)'), 
            gr.Number(value=frequence_penalty, label='Frequency penalty (> 0 encourage new tokens over repeated tokens)'), 
            gr.Number(value=presence_penalty, label='Presence penalty (> 0 encourage new tokens, < 0 encourage existing tokens)'), 
            gr.Textbox(value=sys_prompt, label='System prompt', lines=4, interactive=False),
            gr.Number(value=0, label='current_time', visible=False), 
            # ! Remove the system prompt textbox to avoid jailbreaking
        ], 
        examples=CHAT_EXAMPLES,
        cache_examples=False
    )
    return demo_chat


def upload_file(file):
    # file_paths = [file.name for file in files]
    # return file_paths
    return file.name


RAG_DESCRIPTION = """
* Upload a doc below to answer question about it (RAG).
* Every question must be explicit and self-contained! Because each prompt will invoke a new RAG retrieval without considering previous conversations. 
(E.g: Dont prompt "Answer my previous question in details.")
"""

def create_chat_demo_rag(title=None, description=None):
    sys_prompt = SYSTEM_PROMPT_1
    max_tokens = MAX_TOKENS
    temperature = TEMPERATURE
    frequence_penalty = FREQUENCE_PENALTY
    presence_penalty = PRESENCE_PENALTY
    description = description or RAG_DESCRIPTION

    # with gr.Blocks(title="RAG") as rag_demo:
    additional_inputs = [
        gr.File(label='Upload Document', file_count='single', file_types=['pdf', 'docx', 'txt', 'json']),
        # gr.Textbox(value=None, label='Document path', lines=1, interactive=False),
        gr.Number(value=temperature, label='Temperature (higher -> more random)'), 
        gr.Number(value=max_tokens, label='Max generated tokens (increase if want more generation)'), 
        # gr.Number(value=frequence_penalty, label='Frequency penalty (> 0 encourage new tokens over repeated tokens)'), 
        # gr.Number(value=presence_penalty, label='Presence penalty (> 0 encourage new tokens, < 0 encourage existing tokens)'), 
        gr.Textbox(value=sys_prompt, label='System prompt', lines=1, interactive=False),
        gr.Number(value=0, label='current_time', visible=False), 
    ]
    
    demo_rag_chat = gr.ChatInterface(
        chat_response_stream_rag_multiturn,
        chatbot=gr.Chatbot(
            label=MODEL_NAME + "-RAG",
            bubble_full_width=False,
            latex_delimiters=[
                { "left": "$", "right": "$", "display": False},
                { "left": "$$", "right": "$$", "display": True},
            ],
            show_copy_button=True,
        ),
        textbox=gr.Textbox(placeholder='Type message', lines=1, max_lines=128, min_width=200),
        submit_btn=gr.Button(value='Submit', variant="primary", scale=0),
        # ! consider preventing the stop button
        # stop_btn=None,
        title=title,
        description=description,
        additional_inputs=additional_inputs, 
        additional_inputs_accordion=gr.Accordion("Additional Inputs", open=True),
        # examples=CHAT_EXAMPLES,
        cache_examples=False
    )
    # with demo_rag_chat:
    #     upload_button = gr.UploadButton("Click to Upload document", file_types=['pdf', 'docx', 'txt', 'json'], file_count="single")
    #     upload_button.upload(upload_file, upload_button, additional_inputs[0])

    # return demo_chat
    return demo_rag_chat



def launch_demo():
    global demo, llm, DEBUG, LOG_FILE
    model_desc = MODEL_DESC
    model_path = MODEL_PATH
    model_title = MODEL_TITLE
    hf_model_name = HF_MODEL_NAME
    tensor_parallel = TENSOR_PARALLEL
    assert tensor_parallel > 0 , f'{tensor_parallel} invalid'
    dtype = DTYPE
    sys_prompt = SYSTEM_PROMPT_1
    max_tokens = MAX_TOKENS
    temperature = TEMPERATURE
    frequence_penalty = FREQUENCE_PENALTY
    presence_penalty = PRESENCE_PENALTY
    ckpt_info = "None"

    print(
        f'Launch config: '
        f'\n| model_title=`{model_title}` '
        f'\n| max_tokens={max_tokens} '
        f'\n| dtype={dtype} '
        f'\n| tensor_parallel={tensor_parallel} '
        f'\n| IS_DELETE_FOLDER={IS_DELETE_FOLDER} '
        f'\n| STREAM_YIELD_MULTIPLE={STREAM_YIELD_MULTIPLE} '
        f'\n| STREAM_CHECK_MULTIPLE={STREAM_CHECK_MULTIPLE} '
        f'\n| DISPLAY_MODEL_PATH={DISPLAY_MODEL_PATH} '
        f'\n| LANG_BLOCK_HISTORY={LANG_BLOCK_HISTORY} '
        f'\n| frequence_penalty={frequence_penalty} '
        f'\n| presence_penalty={presence_penalty} '
        f'\n| temperature={temperature} '
        # f'\n| hf_model_name={hf_model_name} '
        f'\n| model_path={model_path} '
        f'\n| DOWNLOAD_SNAPSHOT={DOWNLOAD_SNAPSHOT} '
        f'\n| gpu_memory_utilization={gpu_memory_utilization} '
        f'\n| LOG_PATH={LOG_PATH} | SAVE_LOGS={SAVE_LOGS} '
        f'\n| Desc={model_desc}'
    )

    if DEBUG:
        model_desc += "\n<br>!!!!! This is in debug mode, responses will copy original"
        # response_fn = debug_chat_response_echo
        response_fn = chat_response_stream_multiturn
        print(f'Creating in DEBUG MODE')
        if SAVE_LOGS:
            LOG_FILE = open(LOG_PATH, 'a', encoding='utf-8')
    else:
        # ! load the model
        maybe_delete_folder()

        if DOWNLOAD_SNAPSHOT:
            print(f'Downloading from HF_MODEL_NAME={hf_model_name} -> {model_path}')
            if HF_TOKEN is not None:
                print(f'Load with HF_TOKEN: {HF_TOKEN}')
                snapshot_download(hf_model_name, local_dir=model_path, use_auth_token=True, token=HF_TOKEN)
            else:
                snapshot_download(hf_model_name, local_dir=model_path)

        import vllm
        from vllm import LLM

        print(F'VLLM: {vllm.__version__}')
        ckpt_info = check_model_path(model_path)

        print(f'Load path: {model_path} | {ckpt_info}')

        if QUANTIZATION == 'awq':
            print(F'Load model in int4 quantization')
            llm = LLM(model=model_path, dtype="float16", tensor_parallel_size=tensor_parallel, gpu_memory_utilization=gpu_memory_utilization, quantization="awq", max_model_len=8192)
        else:
            llm = LLM(model=model_path, dtype=dtype, tensor_parallel_size=tensor_parallel, gpu_memory_utilization=gpu_memory_utilization, max_model_len=8192)

        try:
            print(llm.llm_engine.workers[0].model)
        except Exception as e:
            print(f'Cannot print model worker: {e}')

        try:
            llm.llm_engine.scheduler_config.max_model_len = 8192
            llm.llm_engine.scheduler_config.max_num_batched_tokens = 8192
            # llm.llm_engine.tokenizer.add_special_tokens = False
        except Exception as e:
            print(f'Cannot set parameters: {e}')

        print(f'Use system prompt:\n{sys_prompt}')

        response_fn = chat_response_stream_multiturn
        print(F'respond: {response_fn}')

        if SAVE_LOGS:
            LOG_FILE = open(LOG_PATH, 'a', encoding='utf-8')

    if ENABLE_BATCH_INFER:

        # demo_file_upload = create_file_upload_demo()

        demo_free_form = create_free_form_generation_demo()
        
        demo_chat = create_chat_demo()
        demo_chat_rag = create_chat_demo_rag(description=RAG_DESCRIPTION)
        descriptions = model_desc
        if DISPLAY_MODEL_PATH:
            descriptions += f"<br> {path_markdown.format(model_path=model_path)}"

        demo = CustomTabbedInterface(
            interface_list=[
                demo_chat, 
                demo_chat_rag,
                demo_free_form,
                # demo_file_upload, 
            ],
            tab_names=[
                "Chat Interface", 
                "RAG Chat Interface",
                "Text completion",
                # "Batch Inference", 
            ],
            title=f"{model_title}",
            description=descriptions,
        )
    else:
        descriptions = model_desc
        if DISPLAY_MODEL_PATH:
            descriptions += f"<br> {path_markdown.format(model_path=model_path)}"

        demo = create_chat_demo(title=f"{model_title}", description=descriptions)
    demo.title = MODEL_NAME
    
    with demo:
        if DATA_SET_REPO_PATH != "":
            try:
                from performance_plot import attach_plot_to_demo
                attach_plot_to_demo(demo)
            except Exception as e:
                print(f'Fail to load DEMO plot: {str(e)}')
        
        gr.Markdown(cite_markdown)
        if DISPLAY_MODEL_PATH:
            gr.Markdown(path_markdown.format(model_path=model_path))
        
        if ENABLE_AGREE_POPUP:
            demo.load(None, None, None, _js=AGREE_POP_SCRIPTS)

        # login_btn = gr.LoginButton()

    demo.queue(api_open=False)
    return demo


if __name__ == "__main__":
    demo = launch_demo()
    demo.launch(show_api=False, allowed_paths=["seal_logo.png"])