import gradio as gr import pandas as pd import os from huggingface_hub import snapshot_download # clone / pull the lmeh eval data TOKEN = os.environ.get("TOKEN", None) RESULTS_REPO = f"lukecq/SeaExam-results" CACHE_PATH=os.getenv("HF_HOME", ".") EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results") print(EVAL_RESULTS_PATH) snapshot_download( repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", token=TOKEN ) # Load the CSV file def load_csv(file_path): data = pd.read_csv(file_path) return data # Example path to your CSV file csv_path = f'{EVAL_RESULTS_PATH}/SeaExam_results_0419.csv' data = load_csv(csv_path) def show_data(): return data iface = gr.Interface(fn=show_data, inputs = None, outputs="dataframe", title="SeaExam Leaderboard", description="Leaderboard for the SeaExam competition.") iface.launch()