Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
import os | |
from huggingface_hub import snapshot_download | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from src.display.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.envs import API | |
# clone / pull the lmeh eval data | |
TOKEN = os.environ.get("TOKEN", None) | |
RESULTS_REPO = f"SeaLLMs/SeaExam-results" | |
CACHE_PATH=os.getenv("HF_HOME", ".") | |
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results") | |
print(EVAL_RESULTS_PATH) | |
snapshot_download( | |
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", | |
token=TOKEN | |
) | |
def restart_space(): | |
API.restart_space(repo_id="SeaLLMs/SeaExam_leaderboard", token=TOKEN) | |
# Load the CSV file | |
# def load_csv(file_path): | |
# data = pd.read_csv(file_path) | |
# return data | |
def load_data(data_path): | |
df = pd.read_csv(data_path, skiprows=1, header=0).dropna() | |
columns = ['Model', 'type', 'open?', 'shot', 'en', 'zh', 'id', 'th', 'vi', 'avg', 'avg_sea'] | |
columns_sorted = ['Model', 'type', 'open?', 'shot', 'avg', 'avg_sea', 'en', 'zh', 'id', 'th', 'vi'] | |
# Splitting into three separate DataFrames based on the groups M3Exam and MMLU and average | |
df_m3exam = df.iloc[:, :11] # M3Exam columns | |
df_mmlu = df.iloc[:, [0, 1, 2, 3, 11, 12, 13, 14, 15, 16, 17]] # MMLU columns | |
df_avg = df.iloc[:, [0, 1, 2, 3, 18, 19, 20, 21, 22, 23, 24]] # Average columns | |
df_mmlu.columns = columns | |
df_avg.columns = columns | |
# # multiply the values in the ['en', 'zh', 'id', 'th', 'vi', 'avg', 'avg_sea'] by 100 and display as 1 decimal | |
for df_tmp in [df_m3exam, df_mmlu, df_avg]: | |
df_tmp[['en', 'zh', 'id', 'th', 'vi', 'avg', 'avg_sea']] *= 100 | |
df_tmp[['en', 'zh', 'id', 'th', 'vi', 'avg', 'avg_sea']] = df_tmp[['en', 'zh', 'id', 'th', 'vi', 'avg', 'avg_sea']].round(2) | |
# change the order of the columns to ['Model', 'type', 'open?', 'shot', 'avg', 'avg_sea', 'en', 'zh', 'id', 'th', 'vi'] | |
# and sort the columns by 'avg' in descending order | |
df_m3exam = df_m3exam[columns_sorted].sort_values(by='avg', ascending=False) | |
df_mmlu = df_mmlu[columns_sorted].sort_values(by='avg', ascending=False) | |
df_avg = df_avg[columns_sorted].sort_values(by='avg', ascending=False) | |
return df_m3exam, df_mmlu, df_avg | |
# Example path to your CSV file | |
csv_path = f'{EVAL_RESULTS_PATH}/SeaExam_results.csv' | |
# data = load_csv(csv_path) | |
df_m3exam, df_mmlu, df_avg = load_data(csv_path) | |
# def show_data(): | |
# return data | |
# iface = gr.Interface(fn=show_data, inputs = None, outputs="dataframe", title="SeaExam Leaderboard", | |
# description="Leaderboard for the SeaExam competition.") | |
# iface.launch() | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
leaderboard_table = gr.components.Dataframe( | |
value=df_avg, | |
# value=leaderboard_df[ | |
# [c.name for c in fields(AutoEvalColumn) if c.never_hidden] | |
# + shown_columns.value | |
# + [AutoEvalColumn.dummy.name] | |
# ], | |
# headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, | |
# datatype=TYPES, | |
# elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
# column_widths=["2%", "33%"] | |
) | |
with gr.TabItem("π M3Exam", elem_id="llm-benchmark-M3Exam", id=1): | |
leaderboard_table = gr.components.Dataframe( | |
value=df_m3exam, | |
interactive=False, | |
visible=True, | |
) | |
with gr.TabItem("π MMLU", elem_id="llm-benchmark-MMLU", id=2): | |
leaderboard_table = gr.components.Dataframe( | |
value=df_mmlu, | |
interactive=False, | |
visible=True, | |
) | |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=3): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
demo.launch() | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch(share=True) | |