Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
import os | |
from huggingface_hub import snapshot_download, login | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from gradio_leaderboard import Leaderboard, SelectColumns, ColumnFilter | |
from src.display.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
CONTACT_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
SUB_TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.envs import API | |
from src.leaderboard.load_results import load_data | |
# clone / pull the lmeh eval data | |
TOKEN = os.environ.get("TOKEN", None) | |
login(token=TOKEN) | |
RESULTS_REPO = f"SeaLLMs/SeaExam-results" | |
CACHE_PATH=os.getenv("HF_HOME", ".") | |
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results") | |
print(EVAL_RESULTS_PATH) | |
snapshot_download( | |
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", | |
token=TOKEN | |
) | |
def restart_space(): | |
API.restart_space(repo_id="SeaLLMs/SeaExam_leaderboard", token=TOKEN) | |
all_columns = ['R','type', 'Model','open?', 'avg_sea β¬οΈ', 'en', 'zh', 'id', 'th', 'vi', 'avg', 'params(B)'] | |
show_columns = ['R', 'Model','type','open?','params(B)', 'avg_sea β¬οΈ', 'en', 'zh', 'id', 'th', 'vi', 'avg', ] | |
TYPES = ['number', 'markdown', 'str', 'str', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'] | |
# Load the data from the csv file | |
csv_path = f'{EVAL_RESULTS_PATH}/SeaExam_results_20240808.csv' | |
df_m3exam, df_mmlu, df_avg = load_data(csv_path) | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.HTML(SUB_TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.Tab("π Overall"): | |
Leaderboard( | |
value=df_avg[show_columns], | |
select_columns=SelectColumns( | |
default_selection=show_columns, | |
cant_deselect=["R", "Model"], | |
label="Select Columns to Display:", | |
), | |
search_columns=["Model"], | |
# hide_columns=["model_name_for_query", "Model Size"], | |
filter_columns=[ | |
"type", | |
"open?", | |
# ColumnFilter("MOE", type="boolean", default=False, label="MoE"), | |
# ColumnFilter("Flagged", type="boolean", default=False), | |
ColumnFilter("params(B)", default=[7, 10]), | |
], | |
datatype=TYPES, | |
# column_widths=["2%", "33%"], | |
) | |
with gr.Tab("M3Exam"): | |
Leaderboard( | |
value=df_m3exam[show_columns], | |
select_columns=SelectColumns( | |
default_selection=show_columns, | |
cant_deselect=["R", "Model"], | |
label="Select Columns to Display:", | |
), | |
search_columns=["Model"], | |
# hide_columns=["model_name_for_query", "Model Size"], | |
filter_columns=[ | |
"type", | |
"open?", | |
# ColumnFilter("MOE", type="boolean", default=False, label="MoE"), | |
# ColumnFilter("Flagged", type="boolean", default=False), | |
ColumnFilter("params(B)", default=[7, 10]), | |
], | |
datatype=TYPES, | |
# column_widths=["2%", "33%"], | |
) | |
with gr.Tab("MMLU"): | |
Leaderboard( | |
value=df_mmlu[show_columns], | |
select_columns=SelectColumns( | |
default_selection=show_columns, | |
cant_deselect=["R", "Model"], | |
label="Select Columns to Display:", | |
), | |
search_columns=["Model"], | |
# hide_columns=["model_name_for_query", "Model Size"], | |
filter_columns=[ | |
"type", | |
"open?", | |
# ColumnFilter("MOE", type="boolean", default=False, label="MoE"), | |
# ColumnFilter("Flagged", type="boolean", default=False), | |
ColumnFilter("params(B)", default=[7, 10]), | |
], | |
datatype=TYPES, | |
# column_widths=["2%", "33%"], | |
) | |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=3): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
# with gr.Row(): | |
# with gr.Accordion("π Citation", open=False): | |
# citation_button = gr.Textbox( | |
# value=CITATION_BUTTON_TEXT, | |
# label=CITATION_BUTTON_LABEL, | |
# lines=20, | |
# elem_id="citation-button", | |
# show_copy_button=True, | |
# ) | |
gr.Markdown(CONTACT_TEXT, elem_classes="markdown-text") | |
demo.launch() | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch(share=True) | |