File size: 13,897 Bytes
65c6479
441cdc8
 
0e06db3
97d7225
65c6479
9c1b957
 
 
35957e0
9c1b957
 
 
 
60867e4
9c1b957
 
97d7225
541cf85
9c1b957
e608ddc
 
0e06db3
85b9042
e608ddc
 
 
 
 
 
 
65c6479
97d7225
85b9042
97d7225
d31b48d
c69a5b0
 
541cf85
0e06db3
1e647ba
c69a5b0
 
d31b48d
c69a5b0
 
441cdc8
d31b48d
 
 
a55b227
 
 
 
d31b48d
 
a55b227
 
 
 
 
 
 
 
8baedda
d31b48d
 
 
 
 
 
040103b
d31b48d
 
 
a55b227
 
 
 
 
8baedda
a55b227
 
 
 
 
 
8baedda
a55b227
 
 
 
 
 
 
9c1b957
 
 
60867e4
a55b227
60867e4
9c1b957
541cf85
a55b227
d31b48d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
040103b
19ae77b
d31b48d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a55b227
9c1b957
d31b48d
 
9c1b957
 
 
 
 
 
c69a5b0
4fa4bc0
9c1b957
c69a5b0
d31b48d
9c1b957
74fdd72
9c1b957
3b28608
 
 
 
 
 
 
 
7bd7d77
 
 
3b28608
 
7bd7d77
d31b48d
 
7bd7d77
 
 
 
 
 
 
 
d31b48d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc86cb5
7157d11
c69a5b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7157d11
cfb8d80
c69a5b0
cfb8d80
 
c69a5b0
 
cfb8d80
7157d11
 
 
 
 
 
 
 
 
 
c69a5b0
 
 
7157d11
 
 
 
c69a5b0
 
 
 
 
 
 
 
 
 
 
7157d11
cc86cb5
6c84d42
c69a5b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c84d42
cfb8d80
c69a5b0
cfb8d80
 
c69a5b0
 
cfb8d80
6c84d42
 
 
 
 
 
 
 
 
 
c69a5b0
 
 
6c84d42
 
 
 
c69a5b0
 
 
 
 
 
 
 
 
 
 
040103b
cfb8d80
4d3390f
35957e0
 
 
 
 
 
 
 
 
 
441cdc8
9c1b957
97d7225
 
cfb8d80
97d7225
653c0f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import gradio as gr
import pandas as pd
import os
from huggingface_hub import snapshot_download, login
from apscheduler.schedulers.background import BackgroundScheduler

from src.display.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    CONTACT_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
    SUB_TITLE,
)
from src.display.css_html_js import custom_css
from src.envs import API
from src.leaderboard.load_results import load_data

# clone / pull the lmeh eval data
TOKEN = os.environ.get("TOKEN", None)
login(token=TOKEN)
RESULTS_REPO = f"SeaLLMs/SeaExam-results"
CACHE_PATH=os.getenv("HF_HOME", ".")
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
print(EVAL_RESULTS_PATH)
snapshot_download(
    repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", 
    token=TOKEN
)

def restart_space():
    API.restart_space(repo_id="SeaLLMs/SeaExam_leaderboard", token=TOKEN)

all_columns = ['R','type', 'Model','open?', 'avg_sea ⬇️', 'en', 'zh', 'id', 'th', 'vi', 'avg', 'params(B)']
show_columns = ['R', 'Model','type','open?','params(B)', 'avg_sea ⬇️', 'en', 'zh', 'id', 'th', 'vi', 'avg', ]
TYPES = ['number', 'markdown', 'str', 'str', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number']
# Load the data from the csv file
csv_path = f'{EVAL_RESULTS_PATH}/SeaExam_results_20240425.csv'
df_m3exam, df_mmlu, df_avg = load_data(csv_path)
# df_m3exam = df_m3exam.copy()[show_columns]
# df_mmlu = df_mmlu.copy()[show_columns]
df_avg_init = df_avg.copy()[df_avg['type'] == 'πŸ”Ά chat'][show_columns]
df_m3exam_init = df_m3exam.copy()[df_m3exam['type'] == 'πŸ”Ά chat'][show_columns]
df_mmlu_init = df_mmlu.copy()[df_mmlu['type'] == 'πŸ”Ά chat'][show_columns]

# data_types = ['number', 'str', 'markdown','str', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number']
# map_columns = {'rank':'R','type':'type', 'Model':'Model','open?':'open?', 'avg_sea':'avg_sea ⬇️', 'en':'en', 'zh':'zh', 'id':'id', 'th':'th', 'vi':'vi', 'avg':'avg', 'params':'params(B)'}
# map_types = {'rank': 'number', 'type': 'str', 'Model': 'markdown', 'open?': 'str', 'avg_sea': 'number', 'en': 'number', 'zh': 'number', 'id': 'number', 'th': 'number', 'vi': 'number', 'avg': 'number', 'params': 'number'}
# Searching and filtering
def update_table(
    hidden_df: pd.DataFrame,
    # columns: list,
    type_query: list,
    open_query: list,
    # precision_query: str,
    # size_query: list,
    # show_deleted: bool,
    query: str,
):
    # filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
    # filtered_df = filter_queries(query, filtered_df)
    # df = select_columns(filtered_df, columns)
    filtered_df = hidden_df.copy()
    
    filtered_df = filtered_df[filtered_df['type'].isin(type_query)]
    map_open = {'open': 'Y', 'closed': 'N'}
    filtered_df = filtered_df[filtered_df['open?'].isin([map_open[o] for o in open_query])]
    filtered_df = filter_queries(query, filtered_df)
    # filtered_df = filtered_df[[map_columns[k] for k in columns]]
    # deduplication
    # df = df.drop_duplicates(subset=["Model"])
    df = filtered_df.drop_duplicates()
    df = df[show_columns]
    return df

def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df['Model'].str.contains(query, case=False))]

def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
    final_df = []
    if query != "":
        queries = [q.strip() for q in query.split(";")]
        for _q in queries:
            _q = _q.strip()
            if _q != "":
                temp_filtered_df = search_table(filtered_df, _q)
                if len(temp_filtered_df) > 0:
                    final_df.append(temp_filtered_df)
        if len(final_df) > 0:
            filtered_df = pd.concat(final_df)

    return filtered_df

demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.HTML(SUB_TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
    
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… Overall", elem_id="llm-benchmark-Sum", id=0):
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        search_bar = gr.Textbox(
                            placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
                            show_label=False,
                            elem_id="search-bar",
                        )   
                    # with gr.Row():
                    #     with gr.Column():
                    #         shown_columns = gr.CheckboxGroup(
                    #             choices=["rank","type", "Model","open?", "avg_sea", "en", "zh", "id", "th", "vi", "avg", "params"],
                    #             value=["rank", "type", "Model", "avg_sea", "en", "zh", "id", "th", "vi", "avg", "params"],
                    #             label="Select model types to show",
                    #             elem_id="column-select",
                    #             interactive=True,
                    #         )

            # with gr.Row():
                with gr.Column():
                    type_query = gr.CheckboxGroup(
                        choices=["🟒 base", "πŸ”Ά chat"],
                        value=["πŸ”Ά chat" ],
                        label="model types to show",
                        elem_id="type-select",
                        interactive=True,
                    )
                with gr.Column():
                    open_query = gr.CheckboxGroup(
                        choices=["open", "closed"],
                        value=["open", "closed"],
                        label="open-source or closed-source models?",
                        elem_id="open-select",
                        interactive=True,
                    )
            
            leaderboard_table = gr.components.Dataframe(
                value=df_avg_init,
                # [[map_columns[k] for k in shown_columns.value]],
                # value=leaderboard_df[
                #     [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
                #     + shown_columns.value
                #     + [AutoEvalColumn.dummy.name]
                # ],
                # headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                # datatype=['number', 'str', 'markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
                # datatype=[map_types[k] for k in shown_columns.value],
                visible=True,
                # column_widths=["20%", "6%", "8%", "6%", "8%", "8%", "6%", "6%", "6%", "6%", "6%"],
            )

            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=df_avg,
                # elem_id="leaderboard-table",
                interactive=False,
                visible=False,
            )

            search_bar.submit(
                update_table,
                [   
                    # df_avg,
                    hidden_leaderboard_table_for_search,
                    # shown_columns,
                    type_query,
                    open_query,
                    # filter_columns_type,
                    # filter_columns_precision,
                    # filter_columns_size,
                    # deleted_models_visibility,
                    search_bar,
                ],
                leaderboard_table,
            )
            for selector in [type_query, open_query]:
                selector.change(
                    update_table,
                    [   
                        # df_avg,
                        hidden_leaderboard_table_for_search,
                        # shown_columns,
                        type_query,
                        open_query,
                        # filter_columns_type,
                        # filter_columns_precision,
                        # filter_columns_size,
                        # deleted_models_visibility,
                        search_bar,
                    ],
                    leaderboard_table,
                )
        with gr.TabItem("M3Exam", elem_id="llm-benchmark-M3Exam", id=1):
            with gr.Row():
                with gr.Column():
                    search_bar = gr.Textbox(
                        placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
                        show_label=False,
                        elem_id="search-bar",
                    )
                with gr.Column():
                    type_query = gr.CheckboxGroup(
                        choices=["🟒 base", "πŸ”Ά chat"],
                        value=["πŸ”Ά chat" ],
                        label="model types to show",
                        elem_id="type-select",
                        interactive=True,
                    )
                with gr.Column():
                    open_query = gr.CheckboxGroup(
                        choices=["open", "closed"],
                        value=["open", "closed"],
                        label="open-source or closed-source models?",
                        elem_id="open-select",
                        interactive=True,
                    )

            leaderboard_table = gr.components.Dataframe(
                value=df_m3exam_init,
                interactive=False,
                visible=True,
                # datatype=['number', 'str', 'markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
                datatype=TYPES,
            )

            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=df_m3exam,
                interactive=False,
                visible=False,
            )

            search_bar.submit(
                update_table,
                [   
                    hidden_leaderboard_table_for_search, 
                    type_query,
                    open_query,
                    search_bar,
                ],
                leaderboard_table,
            )
            for selector in [type_query, open_query]:
                selector.change(
                    update_table,
                    [   
                        hidden_leaderboard_table_for_search, 
                        type_query,
                        open_query,
                        search_bar,
                    ],
                    leaderboard_table,
                )

        with gr.TabItem("MMLU", elem_id="llm-benchmark-MMLU", id=2):
            with gr.Row():
                with gr.Column():
                    search_bar = gr.Textbox(
                        placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
                        show_label=False,
                        elem_id="search-bar",
                    )
                with gr.Column():
                    type_query = gr.CheckboxGroup(
                        choices=["🟒 base", "πŸ”Ά chat"],
                        value=["πŸ”Ά chat" ],
                        label="model types to show",
                        elem_id="type-select",
                        interactive=True,
                    )
                with gr.Column():
                    open_query = gr.CheckboxGroup(
                        choices=["open", "closed"],
                        value=["open", "closed"],
                        label="open-source or closed-source models?",
                        elem_id="open-select",
                        interactive=True,
                    )

            leaderboard_table = gr.components.Dataframe(
                value=df_mmlu_init,
                interactive=False,
                visible=True,
                # datatype=['number', 'str', 'markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
                datatype=TYPES,
            )

            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=df_mmlu,
                interactive=False,
                visible=False,
            )

            search_bar.submit(
                update_table,
                [   
                    hidden_leaderboard_table_for_search, 
                    type_query,
                    open_query,
                    search_bar,
                ],
                leaderboard_table,
            )
            for selector in [type_query, open_query]:
                selector.change(
                    update_table,
                    [   
                        hidden_leaderboard_table_for_search, 
                        type_query,
                        open_query,
                        search_bar,
                    ],
                    leaderboard_table,
                )

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=3):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
    # with gr.Row():
    #     with gr.Accordion("πŸ“™ Citation", open=False):
    #         citation_button = gr.Textbox(
    #             value=CITATION_BUTTON_TEXT,
    #             label=CITATION_BUTTON_LABEL,
    #             lines=20,
    #             elem_id="citation-button",
    #             show_copy_button=True,
    #         )
    gr.Markdown(CONTACT_TEXT, elem_classes="markdown-text")

demo.launch()

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(share=True)