File size: 5,964 Bytes
65c6479
441cdc8
 
e608ddc
97d7225
65c6479
9c1b957
 
 
 
 
 
 
 
 
97d7225
541cf85
9c1b957
e608ddc
 
85b9042
e608ddc
 
 
 
 
 
 
65c6479
97d7225
85b9042
97d7225
541cf85
1e647ba
 
441cdc8
a55b227
 
 
 
 
 
 
 
 
 
 
 
 
8baedda
a55b227
 
 
 
 
 
8baedda
a55b227
 
 
 
 
 
8baedda
a55b227
 
 
 
 
 
 
9c1b957
 
 
a55b227
9c1b957
541cf85
a55b227
 
 
 
 
 
 
9c1b957
1e647ba
9c1b957
 
 
 
 
 
 
4fa4bc0
9c1b957
 
74fdd72
9c1b957
3b28608
 
 
 
 
 
 
 
7bd7d77
 
 
3b28608
 
7bd7d77
 
 
 
 
 
 
 
 
cfb8d80
7157d11
 
 
 
 
 
 
cfb8d80
1e647ba
cfb8d80
 
 
7157d11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
653c0f4
cfb8d80
1e647ba
cfb8d80
 
 
 
4d3390f
441cdc8
9c1b957
97d7225
 
cfb8d80
97d7225
653c0f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import gradio as gr
import pandas as pd
import os
from huggingface_hub import snapshot_download
from apscheduler.schedulers.background import BackgroundScheduler

from src.display.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.envs import API
from src.leaderboard.load_results import load_data

# clone / pull the lmeh eval data
TOKEN = os.environ.get("TOKEN", None)
RESULTS_REPO = f"SeaLLMs/SeaExam-results"
CACHE_PATH=os.getenv("HF_HOME", ".")
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
print(EVAL_RESULTS_PATH)
snapshot_download(
    repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", 
    token=TOKEN
)

def restart_space():
    API.restart_space(repo_id="SeaLLMs/SeaExam_leaderboard", token=TOKEN)

# Load the data from the csv file
csv_path = f'{EVAL_RESULTS_PATH}/SeaExam_results.csv'
df_m3exam, df_mmlu, df_avg = load_data(csv_path)

# Searching and filtering
def update_table(
    hidden_df: pd.DataFrame,
    # columns: list,
    # type_query: list,
    # precision_query: str,
    # size_query: list,
    # show_deleted: bool,
    query: str,
):
    # filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
    # filtered_df = filter_queries(query, filtered_df)
    # df = select_columns(filtered_df, columns)
    filtered_df = hidden_df.copy()
    df = filter_queries(query, hidden_df)
    return df

def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df['Model'].str.contains(query, case=False))]

def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
    final_df = []
    if query != "":
        queries = [q.strip() for q in query.split(";")]
        for _q in queries:
            _q = _q.strip()
            if _q != "":
                temp_filtered_df = search_table(filtered_df, _q)
                if len(temp_filtered_df) > 0:
                    final_df.append(temp_filtered_df)
        if len(final_df) > 0:
            filtered_df = pd.concat(final_df)

    return filtered_df

demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… Overall", elem_id="llm-benchmark-Sum", id=0):
            with gr.Row():
                search_bar = gr.Textbox(
                    placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
                    show_label=False,
                    elem_id="search-bar",
                )
            
            leaderboard_table = gr.components.Dataframe(
                value=df_avg,
                # value=leaderboard_df[
                #     [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
                #     + shown_columns.value
                #     + [AutoEvalColumn.dummy.name]
                # ],
                # headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
                # datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
                # column_widths=["20%", "6%", "8%", "6%", "8%", "8%", "6%", "6%", "6%", "6%", "6%"],
            )

            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=df_avg,
                # elem_id="leaderboard-table",
                interactive=False,
                visible=False,
            )

            search_bar.submit(
                update_table,
                [   
                    # df_avg,
                    hidden_leaderboard_table_for_search,
                    # shown_columns,
                    # filter_columns_type,
                    # filter_columns_precision,
                    # filter_columns_size,
                    # deleted_models_visibility,
                    search_bar,
                ],
                leaderboard_table,
            )
        with gr.TabItem("πŸ… M3Exam", elem_id="llm-benchmark-M3Exam", id=1):
            with gr.Row():
                search_bar = gr.Textbox(
                    placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
                    show_label=False,
                    elem_id="search-bar",
                )

            leaderboard_table = gr.components.Dataframe(
                value=df_m3exam,
                interactive=False,
                visible=True,
            )

            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=df_m3exam,
                interactive=False,
                visible=False,
            )

            search_bar.submit(
                update_table,
                [   
                    # df_avg,
                    hidden_leaderboard_table_for_search,
                    # shown_columns,
                    # filter_columns_type,
                    # filter_columns_precision,
                    # filter_columns_size,
                    # deleted_models_visibility,
                    search_bar,
                ],
                leaderboard_table,
            )

        with gr.TabItem("πŸ… MMLU", elem_id="llm-benchmark-MMLU", id=2):
            leaderboard_table = gr.components.Dataframe(
                value=df_mmlu,
                interactive=False,
                visible=True,
            )
        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=3):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

demo.launch()

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(share=True)