File size: 7,905 Bytes
65c6479
441cdc8
 
e608ddc
97d7225
65c6479
9c1b957
 
 
35957e0
9c1b957
 
 
 
60867e4
9c1b957
 
97d7225
541cf85
9c1b957
e608ddc
 
85b9042
e608ddc
 
 
 
 
 
 
65c6479
97d7225
85b9042
97d7225
541cf85
1e647ba
 
441cdc8
a55b227
 
 
 
 
 
 
 
 
 
 
 
 
8baedda
040103b
 
 
a55b227
 
 
 
 
8baedda
a55b227
 
 
 
 
 
8baedda
a55b227
 
 
 
 
 
 
9c1b957
 
 
60867e4
a55b227
60867e4
9c1b957
541cf85
a55b227
 
 
 
 
 
040103b
19ae77b
 
 
 
 
 
 
 
 
 
 
 
a55b227
9c1b957
1e647ba
9c1b957
 
 
 
 
 
 
4fa4bc0
9c1b957
 
74fdd72
9c1b957
3b28608
 
 
 
 
 
 
 
7bd7d77
 
 
3b28608
 
7bd7d77
 
 
 
 
 
 
 
 
cc86cb5
7157d11
 
 
 
 
 
 
cfb8d80
1e647ba
cfb8d80
 
 
7157d11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc86cb5
6c84d42
 
 
 
 
 
 
cfb8d80
1e647ba
cfb8d80
 
 
6c84d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
040103b
cfb8d80
4d3390f
35957e0
 
 
 
 
 
 
 
 
 
441cdc8
9c1b957
97d7225
 
cfb8d80
97d7225
653c0f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import gradio as gr
import pandas as pd
import os
from huggingface_hub import snapshot_download
from apscheduler.schedulers.background import BackgroundScheduler

from src.display.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    CONTACT_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
    SUB_TITLE,
)
from src.display.css_html_js import custom_css
from src.envs import API
from src.leaderboard.load_results import load_data

# clone / pull the lmeh eval data
TOKEN = os.environ.get("TOKEN", None)
RESULTS_REPO = f"SeaLLMs/SeaExam-results"
CACHE_PATH=os.getenv("HF_HOME", ".")
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
print(EVAL_RESULTS_PATH)
snapshot_download(
    repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", 
    token=TOKEN
)

def restart_space():
    API.restart_space(repo_id="SeaLLMs/SeaExam_leaderboard", token=TOKEN)

# Load the data from the csv file
csv_path = f'{EVAL_RESULTS_PATH}/SeaExam_results.csv'
df_m3exam, df_mmlu, df_avg = load_data(csv_path)

# Searching and filtering
def update_table(
    hidden_df: pd.DataFrame,
    # columns: list,
    # type_query: list,
    # precision_query: str,
    # size_query: list,
    # show_deleted: bool,
    query: str,
):
    # filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
    # filtered_df = filter_queries(query, filtered_df)
    # df = select_columns(filtered_df, columns)
    filtered_df = hidden_df.copy()
    df = filter_queries(query, filtered_df)
    # deduplication
    df = df.drop_duplicates(subset=["Model"])
    return df

def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df['Model'].str.contains(query, case=False))]

def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
    final_df = []
    if query != "":
        queries = [q.strip() for q in query.split(";")]
        for _q in queries:
            _q = _q.strip()
            if _q != "":
                temp_filtered_df = search_table(filtered_df, _q)
                if len(temp_filtered_df) > 0:
                    final_df.append(temp_filtered_df)
        if len(final_df) > 0:
            filtered_df = pd.concat(final_df)

    return filtered_df

demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.HTML(SUB_TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
    
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… Overall", elem_id="llm-benchmark-Sum", id=0):
            with gr.Row():
                search_bar = gr.Textbox(
                    placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
                    show_label=False,
                    elem_id="search-bar",
                )

            # with gr.Row():
            #     shown_columns = gr.CheckboxGroup(
            #         choices=["🟒 base", "πŸ”Ά chat" 
            #         ],
            #         value=[
            #             "base",
            #             "chat",
            #         ],
            #         label="Select model types to show",
            #         elem_id="column-select",
            #         interactive=True,
            #     )
            
            leaderboard_table = gr.components.Dataframe(
                value=df_avg,
                # value=leaderboard_df[
                #     [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
                #     + shown_columns.value
                #     + [AutoEvalColumn.dummy.name]
                # ],
                # headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
                # datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
                # column_widths=["20%", "6%", "8%", "6%", "8%", "8%", "6%", "6%", "6%", "6%", "6%"],
            )

            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=df_avg,
                # elem_id="leaderboard-table",
                interactive=False,
                visible=False,
            )

            search_bar.submit(
                update_table,
                [   
                    # df_avg,
                    hidden_leaderboard_table_for_search,
                    # shown_columns,
                    # filter_columns_type,
                    # filter_columns_precision,
                    # filter_columns_size,
                    # deleted_models_visibility,
                    search_bar,
                ],
                leaderboard_table,
            )
        with gr.TabItem("M3Exam", elem_id="llm-benchmark-M3Exam", id=1):
            with gr.Row():
                search_bar = gr.Textbox(
                    placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
                    show_label=False,
                    elem_id="search-bar",
                )

            leaderboard_table = gr.components.Dataframe(
                value=df_m3exam,
                interactive=False,
                visible=True,
            )

            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=df_m3exam,
                interactive=False,
                visible=False,
            )

            search_bar.submit(
                update_table,
                [   
                    # df_avg,
                    hidden_leaderboard_table_for_search,
                    # shown_columns,
                    # filter_columns_type,
                    # filter_columns_precision,
                    # filter_columns_size,
                    # deleted_models_visibility,
                    search_bar,
                ],
                leaderboard_table,
            )

        with gr.TabItem("MMLU", elem_id="llm-benchmark-MMLU", id=2):
            with gr.Row():
                search_bar = gr.Textbox(
                    placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
                    show_label=False,
                    elem_id="search-bar",
                )

            leaderboard_table = gr.components.Dataframe(
                value=df_mmlu,
                interactive=False,
                visible=True,
            )

            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=df_mmlu,
                interactive=False,
                visible=False,
            )

            search_bar.submit(
                update_table,
                [   
                    # df_avg,
                    hidden_leaderboard_table_for_search,
                    # shown_columns,
                    # filter_columns_type,
                    # filter_columns_precision,
                    # filter_columns_size,
                    # deleted_models_visibility,
                    search_bar,
                ],
                leaderboard_table,
            )

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=3):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
    # with gr.Row():
    #     with gr.Accordion("πŸ“™ Citation", open=False):
    #         citation_button = gr.Textbox(
    #             value=CITATION_BUTTON_TEXT,
    #             label=CITATION_BUTTON_LABEL,
    #             lines=20,
    #             elem_id="citation-button",
    #             show_copy_button=True,
    #         )
    gr.Markdown(CONTACT_TEXT, elem_classes="markdown-text")

demo.launch()

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(share=True)