Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,37 +4,16 @@ from PIL import Image
|
|
4 |
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
|
5 |
import spaces
|
6 |
|
7 |
-
@spaces.GPU
|
8 |
-
def infer_diagram(image, question):
|
9 |
-
model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-ai2d-448").to("cuda")
|
10 |
-
processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-ft-ai2d-448")
|
11 |
-
|
12 |
-
inputs = processor(images=image, text=question, return_tensors="pt").to("cuda")
|
13 |
-
|
14 |
-
predictions = model.generate(**inputs, max_new_tokens=100)
|
15 |
-
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
|
16 |
|
17 |
@spaces.GPU
|
18 |
def infer_ocrvqa(image, question):
|
19 |
model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-ocrvqa-896").to("cuda")
|
20 |
processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-ft-ocrvqa-896")
|
21 |
-
|
22 |
inputs = processor(images=image,text=question, return_tensors="pt").to("cuda")
|
23 |
-
|
24 |
-
predictions = model.generate(**inputs, max_new_tokens=200)
|
25 |
-
|
26 |
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
|
27 |
|
28 |
@spaces.GPU
|
29 |
-
def infer_infographics(image, question):
|
30 |
-
model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-infovqa-896").to("cuda")
|
31 |
-
processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-ft-infovqa-896")
|
32 |
-
|
33 |
-
inputs = processor(images=image, text=question, return_tensors="pt").to("cuda")
|
34 |
-
|
35 |
-
predictions = model.generate(**inputs, max_new_tokens=100)
|
36 |
-
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
|
37 |
-
@spaces.GPU
|
38 |
def infer_doc(image, question):
|
39 |
model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-docvqa-896").to("cuda")
|
40 |
|
@@ -52,45 +31,22 @@ css = """
|
|
52 |
"""
|
53 |
|
54 |
with gr.Blocks(css=css) as demo:
|
55 |
-
gr.HTML("<h1><center>PaliGemma
|
56 |
-
gr.HTML("<h3><center
|
57 |
-
|
58 |
-
gr.HTML("<h3><center>Models are downloaded on the go, so first inference in each tab might take time if it's not already downloaded.<h3>")
|
59 |
|
60 |
-
with gr.Tab(label="
|
61 |
with gr.Row():
|
62 |
with gr.Column():
|
63 |
input_img = gr.Image(label="Input Document")
|
64 |
question = gr.Text(label="Question")
|
65 |
submit_btn = gr.Button(value="Submit")
|
66 |
output = gr.Text(label="Answer")
|
67 |
-
gr.Examples(
|
68 |
-
[["assets/docvqa_example.png", "How many items are sold?"]],
|
69 |
-
inputs = [input_img, question],
|
70 |
-
outputs = [output],
|
71 |
-
fn=infer_doc,
|
72 |
-
label='Click on any Examples below to get Document Question Answering results quickly 👇'
|
73 |
-
)
|
74 |
|
75 |
submit_btn.click(infer_doc, [input_img, question], [output])
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
with gr.Column():
|
80 |
-
input_img = gr.Image(label="Input Image")
|
81 |
-
question = gr.Text(label="Question")
|
82 |
-
submit_btn = gr.Button(value="Submit")
|
83 |
-
output = gr.Text(label="Answer")
|
84 |
-
gr.Examples(
|
85 |
-
[["assets/infographics_example (1).jpeg", "What is this infographic about?"]],
|
86 |
-
inputs = [input_img, question],
|
87 |
-
outputs = [output],
|
88 |
-
fn=infer_infographics,
|
89 |
-
label='Click on any Examples below to get Infographics QA results quickly 👇'
|
90 |
-
)
|
91 |
-
|
92 |
-
submit_btn.click(infer_infographics, [input_img, question], [output])
|
93 |
-
with gr.Tab(label="Reading from Images"):
|
94 |
with gr.Row():
|
95 |
with gr.Column():
|
96 |
input_img = gr.Image(label="Input Document")
|
@@ -98,27 +54,5 @@ with gr.Blocks(css=css) as demo:
|
|
98 |
submit_btn = gr.Button(value="Submit")
|
99 |
output = gr.Text(label="Infer")
|
100 |
submit_btn.click(infer_ocrvqa, [input_img, question], [output])
|
101 |
-
gr.Examples(
|
102 |
-
[["assets/ocrvqa.jpg", "Who is the author of this book?"]],
|
103 |
-
inputs = [input_img, question],
|
104 |
-
outputs = [output],
|
105 |
-
fn=infer_doc,
|
106 |
-
label='Click on any Examples below to get image reading comprehension results quickly 👇'
|
107 |
-
)
|
108 |
-
with gr.Tab(label="Diagram Understanding"):
|
109 |
-
with gr.Row():
|
110 |
-
with gr.Column():
|
111 |
-
input_img = gr.Image(label="Input Diagram")
|
112 |
-
question = gr.Text(label="Question")
|
113 |
-
submit_btn = gr.Button(value="Submit")
|
114 |
-
output = gr.Text(label="Infer")
|
115 |
-
submit_btn.click(infer_diagram, [input_img, question], [output])
|
116 |
-
gr.Examples(
|
117 |
-
[["assets/diagram.png", "What is the diagram showing?"]],
|
118 |
-
inputs = [input_img, question],
|
119 |
-
outputs = [output],
|
120 |
-
fn=infer_doc,
|
121 |
-
label='Click on any Examples below to get diagram understanding results quickly 👇'
|
122 |
-
)
|
123 |
|
124 |
demo.launch(debug=True)
|
|
|
4 |
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
|
5 |
import spaces
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
@spaces.GPU
|
9 |
def infer_ocrvqa(image, question):
|
10 |
model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-ocrvqa-896").to("cuda")
|
11 |
processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-ft-ocrvqa-896")
|
|
|
12 |
inputs = processor(images=image,text=question, return_tensors="pt").to("cuda")
|
13 |
+
predictions = model.generate(**inputs, max_new_tokens=100)
|
|
|
|
|
14 |
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
|
15 |
|
16 |
@spaces.GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def infer_doc(image, question):
|
18 |
model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-docvqa-896").to("cuda")
|
19 |
|
|
|
31 |
"""
|
32 |
|
33 |
with gr.Blocks(css=css) as demo:
|
34 |
+
gr.HTML("<h1><center>PaliGemma для VQA/OCR 📄<center><h1>")
|
35 |
+
gr.HTML("<h3><center>Использование модели "как есть" без файнтюнинга на документах. ⚡</h3>")
|
36 |
+
|
|
|
37 |
|
38 |
+
with gr.Tab(label="Ответы на вопросы по документам"):
|
39 |
with gr.Row():
|
40 |
with gr.Column():
|
41 |
input_img = gr.Image(label="Input Document")
|
42 |
question = gr.Text(label="Question")
|
43 |
submit_btn = gr.Button(value="Submit")
|
44 |
output = gr.Text(label="Answer")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
submit_btn.click(infer_doc, [input_img, question], [output])
|
47 |
|
48 |
+
|
49 |
+
with gr.Tab(label="Чтение текста со сканов"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
with gr.Row():
|
51 |
with gr.Column():
|
52 |
input_img = gr.Image(label="Input Document")
|
|
|
54 |
submit_btn = gr.Button(value="Submit")
|
55 |
output = gr.Text(label="Infer")
|
56 |
submit_btn.click(infer_ocrvqa, [input_img, question], [output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
demo.launch(debug=True)
|