Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -7,14 +7,7 @@ import tensorflow
|
|
7 |
import tensorflow as tf
|
8 |
from tensorflow.keras import backend as K
|
9 |
from tensorflow.keras.models import Model
|
10 |
-
from tensorflow.keras.optimizers import Adam
|
11 |
-
from tensorflow.keras.metrics import MeanIoU
|
12 |
-
from tensorflow.keras.utils import normalize, to_categorical
|
13 |
-
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate, Conv2DTranspose, BatchNormalization, Dropout, Lambda
|
14 |
-
from tensorflow.keras import layers
|
15 |
|
16 |
-
size = 1024
|
17 |
-
pach_size = 256
|
18 |
|
19 |
def jacard(y_true, y_pred):
|
20 |
y_true_c = K.flatten(y_true)
|
@@ -28,388 +21,6 @@ def bce_dice(y_true, y_pred):
|
|
28 |
return bce(y_true, y_pred) - K.log(jacard(y_true, y_pred))
|
29 |
|
30 |
|
31 |
-
def upsample(X,X_side):
|
32 |
-
"""
|
33 |
-
Upsampling and concatination with the side path
|
34 |
-
"""
|
35 |
-
|
36 |
-
X = Conv2DTranspose(int(X.shape[1]/2), (3, 3), strides=(2, 2), padding='same')(X)
|
37 |
-
#X = tf.keras.layers.UpSampling2D((2,2))(X)
|
38 |
-
concat = tf.keras.layers.Concatenate()([X,X_side])
|
39 |
-
return concat
|
40 |
-
|
41 |
-
def gating_signal(input, out_size, batch_norm=False):
|
42 |
-
"""
|
43 |
-
resize the down layer feature map into the same dimension as the up layer feature map
|
44 |
-
using 1x1 conv
|
45 |
-
:return: the gating feature map with the same dimension of the up layer feature map
|
46 |
-
"""
|
47 |
-
x = layers.Conv2D(out_size, (1, 1), padding='same')(input)
|
48 |
-
if batch_norm:
|
49 |
-
x = layers.BatchNormalization()(x)
|
50 |
-
x = layers.Activation('relu')(x)
|
51 |
-
return x
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
def attention_block(x, gating, inter_shape):
|
56 |
-
shape_x = K.int_shape(x)
|
57 |
-
shape_g = K.int_shape(gating)
|
58 |
-
|
59 |
-
# Getting the x signal to the same shape as the gating signal
|
60 |
-
theta_x = layers.Conv2D(inter_shape, (2, 2), strides=(2, 2), padding='same')(x) # 16
|
61 |
-
shape_theta_x = K.int_shape(theta_x)
|
62 |
-
|
63 |
-
# Getting the gating signal to the same number of filters as the inter_shape
|
64 |
-
phi_g = layers.Conv2D(inter_shape, (1, 1), padding='same')(gating)
|
65 |
-
upsample_g = layers.Conv2DTranspose(inter_shape, (3, 3),
|
66 |
-
strides=(shape_theta_x[1] // shape_g[1], shape_theta_x[2] // shape_g[2]),
|
67 |
-
padding='same')(phi_g) # 16
|
68 |
-
|
69 |
-
concat_xg = layers.add([upsample_g, theta_x])
|
70 |
-
act_xg = layers.Activation('relu')(concat_xg)
|
71 |
-
psi = layers.Conv2D(1, (1, 1), padding='same')(act_xg)
|
72 |
-
sigmoid_xg = layers.Activation('sigmoid')(psi)
|
73 |
-
shape_sigmoid = K.int_shape(sigmoid_xg)
|
74 |
-
upsample_psi = layers.UpSampling2D(size=(shape_x[1] // shape_sigmoid[1], shape_x[2] // shape_sigmoid[2]))(sigmoid_xg) # 32
|
75 |
-
|
76 |
-
upsample_psi = repeat_elem(upsample_psi, shape_x[3])
|
77 |
-
|
78 |
-
y = layers.multiply([upsample_psi, x])
|
79 |
-
|
80 |
-
result = layers.Conv2D(shape_x[3], (1, 1), padding='same')(y)
|
81 |
-
result_bn = layers.BatchNormalization()(result)
|
82 |
-
return result_bn
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
def repeat_elem(tensor, rep):
|
87 |
-
# lambda function to repeat Repeats the elements of a tensor along an axis
|
88 |
-
#by a factor of rep.
|
89 |
-
# If tensor has shape (None, 256,256,3), lambda will return a tensor of shape
|
90 |
-
#(None, 256,256,6), if specified axis=3 and rep=2.
|
91 |
-
|
92 |
-
return layers.Lambda(lambda x, repnum: K.repeat_elements(x, repnum, axis=3),
|
93 |
-
arguments={'repnum': rep})(tensor)
|
94 |
-
|
95 |
-
|
96 |
-
activation_funtion = 'relu'
|
97 |
-
recurrent_repeats = 2 * 4
|
98 |
-
FILTER_NUM = 4 * 4
|
99 |
-
axis = 3
|
100 |
-
|
101 |
-
act_func = 'relu'
|
102 |
-
filters = 64
|
103 |
-
def encoder(inputs, input_tensor):
|
104 |
-
|
105 |
-
#Contraction path
|
106 |
-
conv_1 = Conv2D(filters, (3, 3), activation='relu', padding='same')(inputs)
|
107 |
-
conv_1 = BatchNormalization()(conv_1)
|
108 |
-
conv_1 = Dropout(0.1)(conv_1)
|
109 |
-
conv_1 = Conv2D(filters, (3, 3), activation='relu', padding='same')(conv_1)
|
110 |
-
conv_1 = BatchNormalization()(conv_1)
|
111 |
-
pool_1 = MaxPooling2D((2, 2))(conv_1)
|
112 |
-
|
113 |
-
conv_2 = Conv2D(2*filters, (3, 3), activation='relu', padding='same')(pool_1)
|
114 |
-
conv_2 = BatchNormalization()(conv_2)
|
115 |
-
conv_2 = Dropout(0.1)(conv_2)
|
116 |
-
conv_2 = Conv2D(2*filters, (3, 3), activation='relu', padding='same')(conv_2)
|
117 |
-
conv_2 = BatchNormalization()(conv_2)
|
118 |
-
pool_2 = MaxPooling2D((2, 2))(conv_2)
|
119 |
-
|
120 |
-
conv_3 = Conv2D(4*filters, (3, 3), activation='relu', padding='same')(pool_2)
|
121 |
-
conv_3 = BatchNormalization()(conv_3)
|
122 |
-
conv_3 = Dropout(0.1)(conv_3)
|
123 |
-
conv_3 = Conv2D(4*filters, (3, 3), activation='relu', padding='same')(conv_3)
|
124 |
-
conv_3 = BatchNormalization()(conv_3)
|
125 |
-
pool_3 = MaxPooling2D((2, 2))(conv_3)
|
126 |
-
|
127 |
-
conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same')(pool_3)
|
128 |
-
conv_4 = BatchNormalization()(conv_4)
|
129 |
-
conv_4 = Dropout(0.1)(conv_4)
|
130 |
-
conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same')(conv_4)
|
131 |
-
conv_4 = BatchNormalization()(conv_4)
|
132 |
-
pool_4 = MaxPooling2D(pool_size=(2, 2))(conv_4)
|
133 |
-
|
134 |
-
conv_5 = Conv2D(16*filters, (3, 3), activation='relu', padding='same')(pool_4)
|
135 |
-
conv_5 = BatchNormalization()(conv_5)
|
136 |
-
conv_5 = Dropout(0.1)(conv_5)
|
137 |
-
|
138 |
-
|
139 |
-
model = Model(inputs=[input_tensor], outputs=[conv_5, conv_4, conv_3, conv_2, conv_1])
|
140 |
-
return model
|
141 |
-
|
142 |
-
def encoder_unet(inputs):
|
143 |
-
## Project residual
|
144 |
-
# residual = layers.Conv2D(filters, 1, strides=2, padding="same")(
|
145 |
-
# previous_block_activation
|
146 |
-
# )
|
147 |
-
#x = layers.add([x, residual]) # Add back residual
|
148 |
-
#Contraction path
|
149 |
-
#Contraction path
|
150 |
-
conv_11 = Conv2D(filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
|
151 |
-
conv_11 = BatchNormalization()(conv_11)
|
152 |
-
conv_11 = Dropout(0.2)(conv_11)
|
153 |
-
conv_1 = Conv2D(filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_11)
|
154 |
-
conv_1 = BatchNormalization()(conv_1)
|
155 |
-
#conv_1 = concatenate([resblock(conv_11, 64), conv_1], axis=3)
|
156 |
-
#conv_1 = Dropout(0.2)(conv_1)
|
157 |
-
#pool_1 = layers.GaussianNoise(0.1+np.random.random()*0.4)(conv_1)
|
158 |
-
pool_1 = MaxPooling2D((2, 2))(conv_1)
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
conv_2 = Conv2D(2*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(pool_1)
|
163 |
-
conv_2 = BatchNormalization()(conv_2)
|
164 |
-
conv_2 = Dropout(0.2)(conv_2)
|
165 |
-
conv_2 = Conv2D(2*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_2)
|
166 |
-
conv_2 = BatchNormalization()(conv_2)
|
167 |
-
#conv_2 = Dropout(0.2)(conv_2)
|
168 |
-
#conv_2 = Conv2D(2*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_2)
|
169 |
-
#conv_2 = concatenate([resblock(pool_1, 128), conv_2], axis=3)
|
170 |
-
#conv_2 = BatchNormalization()(conv_2)
|
171 |
-
#conv_2 = Dropout(0.2)(conv_2)
|
172 |
-
#pool_2 = layers.GaussianNoise(0.1+np.random.random()*0.4)(conv_2)
|
173 |
-
pool_2 = MaxPooling2D((2, 2))(conv_2)
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
conv_3 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(pool_2)
|
178 |
-
conv_3 = BatchNormalization()(conv_3)
|
179 |
-
conv_3 = Dropout(0.2)(conv_3)
|
180 |
-
conv_3 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_3)
|
181 |
-
conv_3 = BatchNormalization()(conv_3)
|
182 |
-
#conv_3 = Dropout(0.2)(conv_3)
|
183 |
-
#conv_3 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_3)
|
184 |
-
#conv_3 = BatchNormalization()(conv_3)
|
185 |
-
#conv_3 = Dropout(0.2)(conv_3)
|
186 |
-
conv_3 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_3)
|
187 |
-
conv_3 = BatchNormalization()(conv_3)
|
188 |
-
#conv_3 = concatenate([resblock(pool_2, 256), conv_3], axis=3)
|
189 |
-
#conv_3 = Dropout(0.2)(conv_3)
|
190 |
-
#pool_3 = layers.GaussianNoise(0.1+np.random.random()*0.4)(conv_3)
|
191 |
-
pool_3 = MaxPooling2D((2, 2))(conv_3)
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(pool_3)
|
196 |
-
conv_4 = BatchNormalization()(conv_4)
|
197 |
-
conv_4 = Dropout(0.2)(conv_4)
|
198 |
-
#conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_4)
|
199 |
-
#conv_4 = BatchNormalization()(conv_4)
|
200 |
-
#conv_4 = Dropout(0.2)(conv_4)
|
201 |
-
conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_4)
|
202 |
-
conv_4 = BatchNormalization()(conv_4)
|
203 |
-
conv_4 = Dropout(0.2)(conv_4)
|
204 |
-
#conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_4)
|
205 |
-
#conv_4 = BatchNormalization()(conv_4)
|
206 |
-
#conv_4 = Dropout(0.2)(conv_4)
|
207 |
-
conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_4)
|
208 |
-
conv_4 = BatchNormalization()(conv_4)
|
209 |
-
#conv_4 = concatenate([resblock(pool_3, 512), conv_4], axis=3)
|
210 |
-
#conv_4 = Dropout(0.2)(conv_4)
|
211 |
-
#pool_4 = layers.GaussianNoise(0.1+np.random.random()*0.4)(conv_4)
|
212 |
-
pool_4 = MaxPooling2D(pool_size=(2, 2))(conv_4)
|
213 |
-
|
214 |
-
|
215 |
-
conv_44 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(pool_4)
|
216 |
-
conv_44 = BatchNormalization()(conv_44)
|
217 |
-
conv_44 = Dropout(0.2)(conv_44)
|
218 |
-
conv_44 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_44)
|
219 |
-
conv_44 = BatchNormalization()(conv_44)
|
220 |
-
conv_44 = Dropout(0.2)(conv_44)
|
221 |
-
#conv_44 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_44)
|
222 |
-
#conv_44 = BatchNormalization()(conv_44)
|
223 |
-
#conv_44 = Dropout(0.2)(conv_44)
|
224 |
-
#conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_4)
|
225 |
-
#conv_4 = BatchNormalization()(conv_4)
|
226 |
-
#conv_4 = Dropout(0.2)(conv_4)
|
227 |
-
conv_44 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_44)
|
228 |
-
conv_44 = BatchNormalization()(conv_44)
|
229 |
-
#conv_4 = concatenate([resblock(pool_3, 512), conv_4], axis=3)
|
230 |
-
#conv_44 = Dropout(0.2)(conv_44)
|
231 |
-
#pool_4 = layers.GaussianNoise(0.1+np.random.random()*0.4)(conv_4)
|
232 |
-
pool_44 = MaxPooling2D(pool_size=(2, 2))(conv_44)
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
conv_5 = Conv2D(16*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(pool_44)
|
237 |
-
conv_5 = BatchNormalization()(conv_5)
|
238 |
-
#conv_5 = Conv2D(16*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_5)
|
239 |
-
#conv_5 = BatchNormalization()(conv_5)
|
240 |
-
#conv_5 = concatenate([resblock(pool_4, 1024), conv_5], axis=3)
|
241 |
-
#conv_5 = Dropout(0.2)(conv_5)
|
242 |
-
#conv_5 = layers.GaussianNoise(0.1)(conv_5)
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
model = Model(inputs=[inputs], outputs=[conv_5, conv_44, conv_3, conv_2, conv_1])
|
247 |
-
return model
|
248 |
-
|
249 |
-
def decoder(inputs, input_tensor):
|
250 |
-
#Expansive path
|
251 |
-
|
252 |
-
gating_64 = gating_signal(inputs[0], 16*FILTER_NUM, True)
|
253 |
-
att_64 = attention_block(inputs[1], gating_64, 16*FILTER_NUM)
|
254 |
-
up_stage_2 = upsample(inputs[0],inputs[1])
|
255 |
-
#u6 = Conv2DTranspose(512, (2, 2), strides=(2, 2), padding='same')(inputs[0])
|
256 |
-
u6 = concatenate([up_stage_2, att_64], axis=3)
|
257 |
-
#u6 = concatenate([att_5, u6])
|
258 |
-
#conv_6 = Conv2D(512, (3, 3), activation='relu', padding='same')(u6)
|
259 |
-
#conv_6 = BatchNormalization()(conv_6)
|
260 |
-
#conv_6 = Dropout(0.2)(conv_6)
|
261 |
-
#conv_6 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv_6)
|
262 |
-
#conv_6 = Dropout(0.2)(conv_6)
|
263 |
-
conv_6 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(u6)
|
264 |
-
conv_6 = BatchNormalization()(conv_6)
|
265 |
-
#conv_6 = Dropout(0.2)(conv_6)
|
266 |
-
conv_6 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_6)
|
267 |
-
conv_6 = BatchNormalization()(conv_6)
|
268 |
-
#conv_6 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_6)
|
269 |
-
#conv_6 = BatchNormalization()(conv_6)
|
270 |
-
#conv_6 = Dropout(0.2)(conv_6)
|
271 |
-
#conv_6 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_6)
|
272 |
-
#conv_6 = BatchNormalization()(conv_6)
|
273 |
-
#conv_6 = Dropout(0.2)(conv_6)
|
274 |
-
conv_6 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_6)
|
275 |
-
conv_6 = BatchNormalization()(conv_6)
|
276 |
-
conv_6 = Dropout(0.2)(conv_6)
|
277 |
-
|
278 |
-
|
279 |
-
up_stage_22 = Conv2DTranspose(int(conv_6.shape[1]/2), (3, 3), strides=(2, 2), padding='same')(conv_6)
|
280 |
-
conv_66 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(up_stage_22)
|
281 |
-
conv_66 = BatchNormalization()(conv_66)
|
282 |
-
#conv_6 = Dropout(0.2)(conv_6)
|
283 |
-
#conv_66 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_66)
|
284 |
-
#conv_66 = BatchNormalization()(conv_66)
|
285 |
-
conv_66 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_66)
|
286 |
-
conv_66 = BatchNormalization()(conv_66)
|
287 |
-
#conv_6 = Dropout(0.2)(conv_6)
|
288 |
-
#conv_66 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_66)
|
289 |
-
#conv_66 = BatchNormalization()(conv_66)
|
290 |
-
#conv_6 = Dropout(0.2)(conv_6)
|
291 |
-
conv_66 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_66)
|
292 |
-
conv_66 = BatchNormalization()(conv_66)
|
293 |
-
conv_66 = Dropout(0.2)(conv_66)
|
294 |
-
|
295 |
-
|
296 |
-
gating_128 = gating_signal(conv_66, 8*FILTER_NUM, True)
|
297 |
-
att_128 = attention_block(inputs[2], gating_128, 8*FILTER_NUM)
|
298 |
-
up_stage_3 = upsample(conv_66,inputs[2])
|
299 |
-
#u7 = Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(conv_6)
|
300 |
-
u7 = concatenate([up_stage_3, att_128], axis=3)
|
301 |
-
#conv_7 = Conv2D(256, (3, 3), activation='relu', padding='same')(u7)
|
302 |
-
#conv_7 = BatchNormalization()(conv_7)
|
303 |
-
#conv_7 = Dropout(0.2)(conv_7)
|
304 |
-
#conv_7 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv_7)
|
305 |
-
#conv_7 = Dropout(0.2)(conv_7)
|
306 |
-
conv_7 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(u7)
|
307 |
-
conv_7 = BatchNormalization()(conv_7)
|
308 |
-
#conv_7 = Dropout(0.2)(conv_7)
|
309 |
-
conv_7 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_7)
|
310 |
-
conv_7 = BatchNormalization()(conv_7)
|
311 |
-
#conv_7 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_7)
|
312 |
-
#conv_7 = BatchNormalization()(conv_7)
|
313 |
-
#conv_7 = Dropout(0.2)(conv_7)
|
314 |
-
conv_7 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_7)
|
315 |
-
conv_7 = BatchNormalization()(conv_7)
|
316 |
-
conv_7 = Dropout(0.2)(conv_7)
|
317 |
-
|
318 |
-
gating_256 = gating_signal(conv_7, 4*FILTER_NUM, True)
|
319 |
-
att_256 = attention_block(inputs[3], gating_256, 4*FILTER_NUM)
|
320 |
-
up_stage_4 = upsample(conv_7,inputs[3])
|
321 |
-
#u8 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(conv_7)
|
322 |
-
u8 = concatenate([up_stage_4, att_256], axis=3)
|
323 |
-
#conv_8 = Conv2D(128, (3, 3), activation='relu', padding='same')(u8)
|
324 |
-
#conv_8 = BatchNormalization()(conv_8)
|
325 |
-
#conv_8 = Dropout(0.1)(conv_8)
|
326 |
-
conv_8 = Conv2D(2*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(u8)
|
327 |
-
conv_8 = BatchNormalization()(conv_8)
|
328 |
-
#conv_8 = Dropout(0.2)(conv_8)
|
329 |
-
#conv_8 = Conv2D(2*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(u8)
|
330 |
-
#conv_8 = BatchNormalization()(conv_8)
|
331 |
-
#conv_8 = Dropout(0.2)(conv_8)
|
332 |
-
conv_8 = Conv2D(2*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_8)
|
333 |
-
conv_8 = BatchNormalization()(conv_8)
|
334 |
-
conv_8 = Dropout(0.2)(conv_8)
|
335 |
-
|
336 |
-
gating_512 = gating_signal(conv_8, 2*FILTER_NUM, True)
|
337 |
-
att_512 = attention_block(inputs[4], gating_512, 2*FILTER_NUM)
|
338 |
-
up_stage_5 = upsample(conv_8,inputs[4])
|
339 |
-
#u9 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(conv_8)
|
340 |
-
u9 = concatenate([up_stage_5, att_512], axis=3)
|
341 |
-
|
342 |
-
conv_9 = Conv2D(1*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(u9)
|
343 |
-
conv_9 = BatchNormalization()(conv_9)
|
344 |
-
#conv_9 = Dropout(0.2)(conv_9)
|
345 |
-
conv_9 = Conv2D(1*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_9)
|
346 |
-
conv_9 = BatchNormalization()(conv_9)
|
347 |
-
conv_9 = Dropout(0.2)(conv_9)
|
348 |
-
|
349 |
-
model = Model(inputs=[input_tensor], outputs=[conv_9])
|
350 |
-
return model
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
def unet_2( n_classes=2, height=pach_size, width=pach_size, channels=3, metrics = ['accuracy']):
|
355 |
-
inputs = Input((height, width, channels))
|
356 |
-
|
357 |
-
|
358 |
-
encode = encoder_unet(inputs)
|
359 |
-
decode = decoder(encode.output, inputs)
|
360 |
-
|
361 |
-
outputs = decode.output
|
362 |
-
#outputs = Conv2D(n_classes, (1, 1), activation='softmax', padding='same', kernel_initializer='he_normal')(decode.output)
|
363 |
-
#outputs = tf.reshape(encode_2.output[0], [None, 16, 16, 256])
|
364 |
-
model = Model(inputs=[inputs], outputs=[outputs])
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
if n_classes <= 2:
|
370 |
-
model.compile(optimizer = Adam(lr = 1e-3), loss = 'binary_crossentropy', metrics = metrics)
|
371 |
-
elif n_classes > 2:
|
372 |
-
model.compile(optimizer = Adam(lr = 1e-3), loss = 'categorical_crossentropy', metrics = metrics)
|
373 |
-
|
374 |
-
|
375 |
-
#model.summary()
|
376 |
-
|
377 |
-
return model
|
378 |
-
|
379 |
-
def unet_enssemble(n_classes=2, height=64, width=64, channels=3, metrics = ['accuracy']):
|
380 |
-
x = Input((height, width, channels))
|
381 |
-
|
382 |
-
model10 = unet_2( n_classes=n_classes, height = height, width = width, channels = 3)
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
out = model10(x)
|
387 |
-
|
388 |
-
outputs = Conv2D(n_classes, (1, 1), activation='softmax', padding='same')(out)
|
389 |
-
|
390 |
-
|
391 |
-
#model = Model(inputs=[inputs], outputs=[encode.output])
|
392 |
-
model = Model(inputs=[x], outputs=[outputs])
|
393 |
-
#model = Model(inputs=[model7.input, model11.input], outputs=[outputs])
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
if n_classes <= 2:
|
399 |
-
model.compile(optimizer = Adam(lr = 1e-3), loss = 'binary_crossentropy', metrics = metrics)
|
400 |
-
elif n_classes > 2:
|
401 |
-
model.compile(optimizer = Adam(lr = 1e-3), loss = 'categorical_crossentropy', metrics = metrics)
|
402 |
-
|
403 |
-
#if summary:
|
404 |
-
# model.summary()
|
405 |
-
|
406 |
-
return model
|
407 |
-
|
408 |
-
n_classes = 23
|
409 |
-
n_channels = 3
|
410 |
-
model = unet_enssemble(n_classes=n_classes, height = pach_size, width = pach_size, channels = n_channels)
|
411 |
-
|
412 |
-
|
413 |
size = 1024
|
414 |
pach_size = 256
|
415 |
|
@@ -517,7 +128,7 @@ def weighted_categorical_crossentropy(weights):
|
|
517 |
# Load the model
|
518 |
#model = tf.keras.models.load_model("model.h5", custom_objects={"jacard":jacard, "wcce":weighted_categorical_crossentropy})
|
519 |
#model = tf.keras.models.load_model("model_2.h5", custom_objects={"jacard":jacard, "bce_dice":bce_dice})
|
520 |
-
model =
|
521 |
|
522 |
# Create a user interface for the model
|
523 |
my_app = gr.Blocks()
|
|
|
7 |
import tensorflow as tf
|
8 |
from tensorflow.keras import backend as K
|
9 |
from tensorflow.keras.models import Model
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
11 |
|
12 |
def jacard(y_true, y_pred):
|
13 |
y_true_c = K.flatten(y_true)
|
|
|
21 |
return bce(y_true, y_pred) - K.log(jacard(y_true, y_pred))
|
22 |
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
size = 1024
|
25 |
pach_size = 256
|
26 |
|
|
|
128 |
# Load the model
|
129 |
#model = tf.keras.models.load_model("model.h5", custom_objects={"jacard":jacard, "wcce":weighted_categorical_crossentropy})
|
130 |
#model = tf.keras.models.load_model("model_2.h5", custom_objects={"jacard":jacard, "bce_dice":bce_dice})
|
131 |
+
model = tf.keras.models.load_model("model_2 (1).h5", custom_objects={"jacard":jacard, "bce_dice":bce_dice})
|
132 |
|
133 |
# Create a user interface for the model
|
134 |
my_app = gr.Blocks()
|