fradinho's picture
Update app.py
c6254c8
raw
history blame
31.9 kB
import gradio as gr
from PIL import Image
from patchify import patchify, unpatchify
import numpy as np
from skimage.io import imshow, imsave
import tensorflow
import tensorflow as tf
from tensorflow.keras import backend as K
size = 1024
pach_size = 256
def jacard(y_true, y_pred):
y_true_c = K.flatten(y_true)
y_pred_c = K.flatten(y_pred)
intersection = K.sum(y_true_c * y_pred_c)
return (intersection + 1.0) / (K.sum(y_true_c) + K.sum(y_pred_c) - intersection + 1.0)
def bce_dice(y_true, y_pred):
bce = tf.keras.losses.BinaryCrossentropy()
return bce(y_true, y_pred) - K.log(jacard(y_true, y_pred))
def upsample(X,X_side):
"""
Upsampling and concatination with the side path
"""
X = Conv2DTranspose(int(X.shape[1]/2), (3, 3), strides=(2, 2), padding='same')(X)
#X = tf.keras.layers.UpSampling2D((2,2))(X)
concat = tf.keras.layers.Concatenate()([X,X_side])
return concat
def gating_signal(input, out_size, batch_norm=False):
"""
resize the down layer feature map into the same dimension as the up layer feature map
using 1x1 conv
:return: the gating feature map with the same dimension of the up layer feature map
"""
x = layers.Conv2D(out_size, (1, 1), padding='same')(input)
if batch_norm:
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
return x
def attention_block(x, gating, inter_shape):
shape_x = K.int_shape(x)
shape_g = K.int_shape(gating)
# Getting the x signal to the same shape as the gating signal
theta_x = layers.Conv2D(inter_shape, (2, 2), strides=(2, 2), padding='same')(x) # 16
shape_theta_x = K.int_shape(theta_x)
# Getting the gating signal to the same number of filters as the inter_shape
phi_g = layers.Conv2D(inter_shape, (1, 1), padding='same')(gating)
upsample_g = layers.Conv2DTranspose(inter_shape, (3, 3),
strides=(shape_theta_x[1] // shape_g[1], shape_theta_x[2] // shape_g[2]),
padding='same')(phi_g) # 16
concat_xg = layers.add([upsample_g, theta_x])
act_xg = layers.Activation('relu')(concat_xg)
psi = layers.Conv2D(1, (1, 1), padding='same')(act_xg)
sigmoid_xg = layers.Activation('sigmoid')(psi)
shape_sigmoid = K.int_shape(sigmoid_xg)
upsample_psi = layers.UpSampling2D(size=(shape_x[1] // shape_sigmoid[1], shape_x[2] // shape_sigmoid[2]))(sigmoid_xg) # 32
upsample_psi = repeat_elem(upsample_psi, shape_x[3])
y = layers.multiply([upsample_psi, x])
result = layers.Conv2D(shape_x[3], (1, 1), padding='same')(y)
result_bn = layers.BatchNormalization()(result)
return result_bn
def repeat_elem(tensor, rep):
# lambda function to repeat Repeats the elements of a tensor along an axis
#by a factor of rep.
# If tensor has shape (None, 256,256,3), lambda will return a tensor of shape
#(None, 256,256,6), if specified axis=3 and rep=2.
return layers.Lambda(lambda x, repnum: K.repeat_elements(x, repnum, axis=3),
arguments={'repnum': rep})(tensor)
activation_funtion = 'relu'
recurrent_repeats = 2 * 4
FILTER_NUM = 4 * 4
axis = 3
act_func = 'relu'
filters = 64
def encoder(inputs, input_tensor):
#Contraction path
conv_1 = Conv2D(filters, (3, 3), activation='relu', padding='same')(inputs)
conv_1 = BatchNormalization()(conv_1)
conv_1 = Dropout(0.1)(conv_1)
conv_1 = Conv2D(filters, (3, 3), activation='relu', padding='same')(conv_1)
conv_1 = BatchNormalization()(conv_1)
pool_1 = MaxPooling2D((2, 2))(conv_1)
conv_2 = Conv2D(2*filters, (3, 3), activation='relu', padding='same')(pool_1)
conv_2 = BatchNormalization()(conv_2)
conv_2 = Dropout(0.1)(conv_2)
conv_2 = Conv2D(2*filters, (3, 3), activation='relu', padding='same')(conv_2)
conv_2 = BatchNormalization()(conv_2)
pool_2 = MaxPooling2D((2, 2))(conv_2)
conv_3 = Conv2D(4*filters, (3, 3), activation='relu', padding='same')(pool_2)
conv_3 = BatchNormalization()(conv_3)
conv_3 = Dropout(0.1)(conv_3)
conv_3 = Conv2D(4*filters, (3, 3), activation='relu', padding='same')(conv_3)
conv_3 = BatchNormalization()(conv_3)
pool_3 = MaxPooling2D((2, 2))(conv_3)
conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same')(pool_3)
conv_4 = BatchNormalization()(conv_4)
conv_4 = Dropout(0.1)(conv_4)
conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same')(conv_4)
conv_4 = BatchNormalization()(conv_4)
pool_4 = MaxPooling2D(pool_size=(2, 2))(conv_4)
conv_5 = Conv2D(16*filters, (3, 3), activation='relu', padding='same')(pool_4)
conv_5 = BatchNormalization()(conv_5)
conv_5 = Dropout(0.1)(conv_5)
model = Model(inputs=[input_tensor], outputs=[conv_5, conv_4, conv_3, conv_2, conv_1])
return model
def encoder_unet(inputs):
## Project residual
# residual = layers.Conv2D(filters, 1, strides=2, padding="same")(
# previous_block_activation
# )
#x = layers.add([x, residual]) # Add back residual
#Contraction path
#Contraction path
conv_11 = Conv2D(filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
conv_11 = BatchNormalization()(conv_11)
conv_11 = Dropout(0.2)(conv_11)
conv_1 = Conv2D(filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_11)
conv_1 = BatchNormalization()(conv_1)
#conv_1 = concatenate([resblock(conv_11, 64), conv_1], axis=3)
#conv_1 = Dropout(0.2)(conv_1)
#pool_1 = layers.GaussianNoise(0.1+np.random.random()*0.4)(conv_1)
pool_1 = MaxPooling2D((2, 2))(conv_1)
conv_2 = Conv2D(2*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(pool_1)
conv_2 = BatchNormalization()(conv_2)
conv_2 = Dropout(0.2)(conv_2)
conv_2 = Conv2D(2*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_2)
conv_2 = BatchNormalization()(conv_2)
#conv_2 = Dropout(0.2)(conv_2)
#conv_2 = Conv2D(2*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_2)
#conv_2 = concatenate([resblock(pool_1, 128), conv_2], axis=3)
#conv_2 = BatchNormalization()(conv_2)
#conv_2 = Dropout(0.2)(conv_2)
#pool_2 = layers.GaussianNoise(0.1+np.random.random()*0.4)(conv_2)
pool_2 = MaxPooling2D((2, 2))(conv_2)
conv_3 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(pool_2)
conv_3 = BatchNormalization()(conv_3)
conv_3 = Dropout(0.2)(conv_3)
conv_3 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_3)
conv_3 = BatchNormalization()(conv_3)
#conv_3 = Dropout(0.2)(conv_3)
#conv_3 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_3)
#conv_3 = BatchNormalization()(conv_3)
#conv_3 = Dropout(0.2)(conv_3)
conv_3 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_3)
conv_3 = BatchNormalization()(conv_3)
#conv_3 = concatenate([resblock(pool_2, 256), conv_3], axis=3)
#conv_3 = Dropout(0.2)(conv_3)
#pool_3 = layers.GaussianNoise(0.1+np.random.random()*0.4)(conv_3)
pool_3 = MaxPooling2D((2, 2))(conv_3)
conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(pool_3)
conv_4 = BatchNormalization()(conv_4)
conv_4 = Dropout(0.2)(conv_4)
#conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_4)
#conv_4 = BatchNormalization()(conv_4)
#conv_4 = Dropout(0.2)(conv_4)
conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_4)
conv_4 = BatchNormalization()(conv_4)
conv_4 = Dropout(0.2)(conv_4)
#conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_4)
#conv_4 = BatchNormalization()(conv_4)
#conv_4 = Dropout(0.2)(conv_4)
conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_4)
conv_4 = BatchNormalization()(conv_4)
#conv_4 = concatenate([resblock(pool_3, 512), conv_4], axis=3)
#conv_4 = Dropout(0.2)(conv_4)
#pool_4 = layers.GaussianNoise(0.1+np.random.random()*0.4)(conv_4)
pool_4 = MaxPooling2D(pool_size=(2, 2))(conv_4)
conv_44 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(pool_4)
conv_44 = BatchNormalization()(conv_44)
conv_44 = Dropout(0.2)(conv_44)
conv_44 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_44)
conv_44 = BatchNormalization()(conv_44)
conv_44 = Dropout(0.2)(conv_44)
#conv_44 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_44)
#conv_44 = BatchNormalization()(conv_44)
#conv_44 = Dropout(0.2)(conv_44)
#conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_4)
#conv_4 = BatchNormalization()(conv_4)
#conv_4 = Dropout(0.2)(conv_4)
conv_44 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_44)
conv_44 = BatchNormalization()(conv_44)
#conv_4 = concatenate([resblock(pool_3, 512), conv_4], axis=3)
#conv_44 = Dropout(0.2)(conv_44)
#pool_4 = layers.GaussianNoise(0.1+np.random.random()*0.4)(conv_4)
pool_44 = MaxPooling2D(pool_size=(2, 2))(conv_44)
conv_5 = Conv2D(16*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(pool_44)
conv_5 = BatchNormalization()(conv_5)
#conv_5 = Conv2D(16*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_5)
#conv_5 = BatchNormalization()(conv_5)
#conv_5 = concatenate([resblock(pool_4, 1024), conv_5], axis=3)
#conv_5 = Dropout(0.2)(conv_5)
#conv_5 = layers.GaussianNoise(0.1)(conv_5)
model = Model(inputs=[inputs], outputs=[conv_5, conv_44, conv_3, conv_2, conv_1])
return model
def decoder(inputs, input_tensor):
#Expansive path
gating_64 = gating_signal(inputs[0], 16*FILTER_NUM, True)
att_64 = attention_block(inputs[1], gating_64, 16*FILTER_NUM)
up_stage_2 = upsample(inputs[0],inputs[1])
#u6 = Conv2DTranspose(512, (2, 2), strides=(2, 2), padding='same')(inputs[0])
u6 = concatenate([up_stage_2, att_64], axis=3)
#u6 = concatenate([att_5, u6])
#conv_6 = Conv2D(512, (3, 3), activation='relu', padding='same')(u6)
#conv_6 = BatchNormalization()(conv_6)
#conv_6 = Dropout(0.2)(conv_6)
#conv_6 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv_6)
#conv_6 = Dropout(0.2)(conv_6)
conv_6 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(u6)
conv_6 = BatchNormalization()(conv_6)
#conv_6 = Dropout(0.2)(conv_6)
conv_6 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_6)
conv_6 = BatchNormalization()(conv_6)
#conv_6 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_6)
#conv_6 = BatchNormalization()(conv_6)
#conv_6 = Dropout(0.2)(conv_6)
#conv_6 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_6)
#conv_6 = BatchNormalization()(conv_6)
#conv_6 = Dropout(0.2)(conv_6)
conv_6 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_6)
conv_6 = BatchNormalization()(conv_6)
conv_6 = Dropout(0.2)(conv_6)
up_stage_22 = Conv2DTranspose(int(conv_6.shape[1]/2), (3, 3), strides=(2, 2), padding='same')(conv_6)
conv_66 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(up_stage_22)
conv_66 = BatchNormalization()(conv_66)
#conv_6 = Dropout(0.2)(conv_6)
#conv_66 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_66)
#conv_66 = BatchNormalization()(conv_66)
conv_66 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_66)
conv_66 = BatchNormalization()(conv_66)
#conv_6 = Dropout(0.2)(conv_6)
#conv_66 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_66)
#conv_66 = BatchNormalization()(conv_66)
#conv_6 = Dropout(0.2)(conv_6)
conv_66 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_66)
conv_66 = BatchNormalization()(conv_66)
conv_66 = Dropout(0.2)(conv_66)
gating_128 = gating_signal(conv_66, 8*FILTER_NUM, True)
att_128 = attention_block(inputs[2], gating_128, 8*FILTER_NUM)
up_stage_3 = upsample(conv_66,inputs[2])
#u7 = Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(conv_6)
u7 = concatenate([up_stage_3, att_128], axis=3)
#conv_7 = Conv2D(256, (3, 3), activation='relu', padding='same')(u7)
#conv_7 = BatchNormalization()(conv_7)
#conv_7 = Dropout(0.2)(conv_7)
#conv_7 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv_7)
#conv_7 = Dropout(0.2)(conv_7)
conv_7 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(u7)
conv_7 = BatchNormalization()(conv_7)
#conv_7 = Dropout(0.2)(conv_7)
conv_7 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_7)
conv_7 = BatchNormalization()(conv_7)
#conv_7 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_7)
#conv_7 = BatchNormalization()(conv_7)
#conv_7 = Dropout(0.2)(conv_7)
conv_7 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_7)
conv_7 = BatchNormalization()(conv_7)
conv_7 = Dropout(0.2)(conv_7)
gating_256 = gating_signal(conv_7, 4*FILTER_NUM, True)
att_256 = attention_block(inputs[3], gating_256, 4*FILTER_NUM)
up_stage_4 = upsample(conv_7,inputs[3])
#u8 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(conv_7)
u8 = concatenate([up_stage_4, att_256], axis=3)
#conv_8 = Conv2D(128, (3, 3), activation='relu', padding='same')(u8)
#conv_8 = BatchNormalization()(conv_8)
#conv_8 = Dropout(0.1)(conv_8)
conv_8 = Conv2D(2*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(u8)
conv_8 = BatchNormalization()(conv_8)
#conv_8 = Dropout(0.2)(conv_8)
#conv_8 = Conv2D(2*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(u8)
#conv_8 = BatchNormalization()(conv_8)
#conv_8 = Dropout(0.2)(conv_8)
conv_8 = Conv2D(2*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_8)
conv_8 = BatchNormalization()(conv_8)
conv_8 = Dropout(0.2)(conv_8)
gating_512 = gating_signal(conv_8, 2*FILTER_NUM, True)
att_512 = attention_block(inputs[4], gating_512, 2*FILTER_NUM)
up_stage_5 = upsample(conv_8,inputs[4])
#u9 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(conv_8)
u9 = concatenate([up_stage_5, att_512], axis=3)
conv_9 = Conv2D(1*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(u9)
conv_9 = BatchNormalization()(conv_9)
#conv_9 = Dropout(0.2)(conv_9)
conv_9 = Conv2D(1*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_9)
conv_9 = BatchNormalization()(conv_9)
conv_9 = Dropout(0.2)(conv_9)
model = Model(inputs=[input_tensor], outputs=[conv_9])
return model
def unet_2( n_classes=2, height=size, width=size, channels=3, metrics = ['accuracy']):
inputs = Input((height, width, channels))
encode = encoder_unet(inputs)
decode = decoder(encode.output, inputs)
#print(type(decode.output))
#print(decode.output.shape)
#encode_2 = encoder(decode.output, inputs)
#decode_2 = decoder(encode_2.output, inputs)
#########outputs = decode.output
#print(encode_2.output.shape)
#u7 = UpSampling2D((2, 2))(encode_2.output)
#u7 = Conv2D(32, (3, 3), activation='relu', padding='same')(u7)
#u7 = UpSampling2D((2, 2))(u7)
#u7 = Conv2D(64, (3, 3), activation='relu', padding='same')(u7)
#u7 = UpSampling2D((2, 2))(u7)
#u7 = Conv2D(128, (3, 3), activation='relu', padding='same')(u7)
#u7 = UpSampling2D((2, 2))(u7)
outputs = decode.output
#outputs = Conv2D(n_classes, (1, 1), activation='softmax', padding='same', kernel_initializer='he_normal')(decode.output)
#outputs = tf.reshape(encode_2.output[0], [None, 16, 16, 256])
model = Model(inputs=[inputs], outputs=[outputs])
if n_classes <= 2:
model.compile(optimizer = Adam(lr = 1e-3), loss = 'binary_crossentropy', metrics = metrics)
elif n_classes > 2:
model.compile(optimizer = Adam(lr = 1e-3), loss = 'categorical_crossentropy', metrics = metrics)
#model.summary()
return model
def unet_enssemble(n_classes=2, height=64, width=64, channels=3, metrics = ['accuracy']):
x = Input((height, width, channels))
#x = inputs
#augmented = data_augmentation(x)
#augmented_0 = data_augmentation_0(x)
#augmented_1 = data_augmentation_1(x)
#augmented_2 = data_augmentation_2(x)
#augmented_3 = data_augmentation_3(x)
#augmented_4 = data_augmentation_4(x)
#augmented_5 = data_augmentation_5(x)
#augmented = layers.GaussianNoise(0.1)(augmented)
#out_x = concatenate([augmented, augmented_0], axis=0)
#augmented = x
#BACKBONE = 'resnet152'
#BACKBONE = 'efficientnetb7'
#model5 = sm.Linknet(BACKBONE, encoder_weights='imagenet', classes=n_classes, activation='softmax')
#model10 = sm.Unet(BACKBONE,
#pyramid_block_filters=32,
# encoder_weights='imagenet', classes=n_classes, activation='softmax')
#BACKBONE = 'vgg16'
#model7 = sm.FPN(BACKBONE,
#encoder_freeze = True,
#pyramid_block_filters=16,
# encoder_weights='imagenet', classes=n_classes, activation='softmax')
#BACKBONE = 'inceptionresnetv2'
#model8 = sm.FPN(BACKBONE, pyramid_block_filters=16, encoder_weights='imagenet', classes=n_classes, activation='softmax')
#BACKBONE = 'resnext50'
#BACKBONE = 'seresnet152'
#decode_filt=(256, 128, 64, 32, 16)
#BACKBONE = 'mobilenetv2'
#model10 = sm.FPN(BACKBONE, pyramid_block_filters=256, encoder_weights='imagenet', classes=n_classes, activation='softmax')
#model10_x1 = sm.Unet(BACKBONE, decoder_filters=decode_filt,
# decoder_block_type='upsampling',
#decoder_block_type='transpose',
# encoder_weights='imagenet', classes=n_classes, activation='softmax')
#model10_x2 = sm.Linknet(BACKBONE, encoder_weights='imagenet', classes=n_classes, activation='softmax')
#BACKBONE = 'resnet18'
#BACKBONE = 'resnext50'
#BACKBONE = 'mobilenetv2'
#BACKBONE = 'efficientnetb7'
#model10 = sm.FPN(BACKBONE,
#encoder_freeze = True,
#pyramid_block_filters=16,
# encoder_weights='imagenet',
# classes=n_classes, activation='softmax')
#BACKBONE = 'vgg16'
#model7 = sm.FPN(BACKBONE,
# pyramid_block_filters=512,
# encoder_weights='imagenet', classes=n_classes, activation='softmax')
#model9 = create_cct_model(n_classes=n_classes, height = height, width = width, channels = n_channels)
#reshaped = tf.reshape(encoded_patches , [-1,256,256,64])
#model7 = unet_2( n_classes=n_classes, height = height, width = width, channels = 3)
model10 = unet_2( n_classes=n_classes, height = height, width = width, channels = 3)
#model10_xx = unet_2( n_classes=n_classes, height = height, width = width, channels = 3)
#model8 = unet_2( n_classes=n_classes,
# height = height, width = width, channels = n_channels)(augmented)
###model8_x = unet_2( n_classes=n_classes,
### height = height, width = width, channels = n_channels)(x)
#model1 = get_model(inputs=x, n_classes=n_classes, height = height, width = width, channels = n_channels)
#model2 = DeeplabV3Plus(model_input=x, image_size=256, num_classes=n_classes)
#model4 = unet_2(inputs=x, n_classes=n_classes, height = height, width = width, channels = n_channels)
#model3 = swin_unet_2d_base(x, filter_num_begin, depth, stack_num_down, stack_num_up,
# patch_size, num_heads, window_size, num_mlp,
# shift_window=shift_window, name='swin_unet')
#print(model1.output.shape, model2.output.shape)
#model5.trainable = False
#model6.trainable = False
#out = model11(augmented)
#out = Conv2D(3, (3, 3), activation=activation_funtion, padding='same')(out)
#out = K.flatten(out)
#out = K.reshape(out,(-1,256,256,1))
#out = model11(x)
#out = unet_2(inputs=augmented, n_classes=n_classes, height = height, width = width, channels = n_channels)
#quantize_model_7 = tfmot.quantization.keras.quantize_model
# q_aware stands for for quantization aware.
#q_aware_model_7 = quantize_model(model7)
#quantize_model_11 = tfmot.quantization.keras.quantize_model
# q_aware stands for for quantization aware.
#q_aware_model_11 = quantize_model(model11)
out = model10(x)
#out = layers.GaussianNoise(0.1+np.random.random()*0.4)(out)
#out = layers.GaussianNoise(0.1)(out)
#out = concatenate([q_aware_model_7(augmented), q_aware_model_11(augmented)], axis=3)
#out = concatenate([model6(augmented), model8(augmented), model6(x), model8(x)], axis=3)
#out = concatenate([model10_x1(augmented), model10_x1(x), model10_x1(augmented_0)], axis=3)
#out_7 = concatenate([model11(augmented), model7(augmented)], axis=3)
#out = concatenate([x, out], axis=3)
#out = tf.keras.layers.AveragePooling2D(pool_size=(2, 2), strides=(1, 1), padding='same')(out)
#out = Conv2D(3, (3, 3), activation=activation_funtion, padding='same')(out)
#out = model7(out)
#out = model10_x(attention_weights)
#model11 = Conv2D(32, (3, 3), activation=activation_funtion, padding='same')(model11)
#model7 = Conv2D(32, (3, 3), activation=activation_funtion, padding='same')(model7)
#out = concatenate([model10_x(x), model10_x(augmented), model10_x(augmented_0)], axis=3)
#out = concatenate([ model7(x), model11(x),
# model7(augmented_0), model11(augmented_0),
# model7(augmented_1), model11(augmented_1),
# model7(augmented_2), model11(augmented_2),
# model7(augmented_3), model11(augmented_3),
# model7(augmented_4), model11(augmented_4),
# model7(augmented_5), model11(augmented_5)],axis=3)
#out = tf.keras.layers.PReLU()(out)
#out = Conv2D(64, (3, 3), activation=activation_funtion, padding='same')(out)
#out = BatchNormalization()(out)
#out = Dropout(0.2)(out)
#####out = hybrid_pool_layer((2,2))(out)
#a = tf.keras.layers.AveragePooling2D(padding='same')(out)
#a = Lambda(lambda xx : xx*alpha)(a)
#m = tf.keras.layers.MaxPooling2D(padding='same')(out)
#m = Lambda(lambda xx : xx*(1-alpha))(m)
#out = tf.keras.layers.Add()([a,m])
#out = tf.keras.layers.AveragePooling2D(pool_size=(2, 2), strides=(1, 1), padding='same')(out)
#out = layers.add([model1.output, model2.output])
#out = layers.multiply([model1.output, model2.output])
##out = layers.add([model, encode.output])
##out = layers.multiply([model, encode.output])
#out = Conv2D(128, (3, 3), activation=activation_funtion, padding='same')(out)
#out = BatchNormalization()(out)
#out = Conv2D(64, (3, 3), activation=activation_funtion, padding='same')(out)
#out = SpikingActivation("relu")(out)
#out = BatchNormalization()(out)
#out = Dropout(0.2)(out)
#out = Conv2D(32, (3, 3), activation=activation_funtion, padding='same')(out)
#out = BatchNormalization()(out)
#out = Conv2D(64, (3, 3), activation=activation_funtion, padding='same')(out)
#out = BatchNormalization()(out)
#out = Dropout(0.2)(out)
#out = tf.keras.layers.PReLU()(out)
#out = Conv2D(64, (3, 3), activation=activation_funtion, padding='same')(out)
#out = BatchNormalization()(out)
#out = Dropout(0.2)(out)
#out = tf.keras.layers.PReLU()(out)
#out = concatenate([conv_out_jump, out], axis=3)
#out = Conv2D(256, (3, 3), activation=activation_funtion, padding='same')(out)
#out = BatchNormalization()(out)
#out = Dropout(0.2)(out)
#out = tf.keras.layers.AveragePooling2D(pool_size=(2, 2), strides=(1, 1), padding='same')(out)
#out = UpSampling2D((2, 2))(out)
#out_list = []
#for i in range(1,23):
# outputs1 = Conv2D(n_classes-i, (1, 1), activation='softmax')(out)
# out_list.append(outputs1)
#outputs2 = Conv2D(n_classes-1, (1, 1), activation='softmax')(out)
#outputs3 = Conv2D(n_classes-2, (1, 1), activation='softmax')(out)
#outputs4 = Conv2D(n_classes-3, (1, 1), activation='softmax')(out)
#outputs5 = Conv2D(n_classes-4, (1, 1), activation='softmax')(out)
#outputs6 = Conv2D(n_classes-5, (1, 1), activation='softmax')(out)
#outputs7 = Conv2D(n_classes-6, (1, 1), activation='softmax')(out)
#outputs8 = Conv2D(n_classes-7, (1, 1), activation='softmax')(out)
#outputs9 = Conv2D(n_classes-8, (1, 1), activation='softmax')(out)
#out_list = [outputs1, outputs2, outputs3, outputs4, outputs5, outputs6, outputs7, outputs8, outputs9]
#outputs = Conv2D(n_classes, (1, 1), activation='softmax')(encode.output)
#outputs = concatenate(out_list, axis=3)
#outputs = tf.keras.layers.AveragePooling2D(pool_size=(2, 2), strides=(1, 1), padding='same')(outputs)
outputs = Conv2D(n_classes, (1, 1), activation='softmax', padding='same')(out)
#model = Model(inputs=[inputs], outputs=[encode.output])
model = Model(inputs=[x], outputs=[outputs])
#model = Model(inputs=[model7.input, model11.input], outputs=[outputs])
if n_classes <= 2:
model.compile(optimizer = Adam(lr = 1e-3), loss = 'binary_crossentropy', metrics = metrics)
elif n_classes > 2:
model.compile(optimizer = Adam(lr = 1e-3), loss = 'categorical_crossentropy', metrics = metrics)
#if summary:
# model.summary()
return model
model = unet_enssemble(n_classes=n_classes, height = height, width = width, channels = n_channels)
size = 1024
pach_size = 256
def predict_2(image):
image = Image.fromarray(image).resize((size,size))
image = np.array(image)
stride = 1
steps = int(pach_size/stride)
patches_img = patchify(image, (pach_size, pach_size, 3), step=steps) #Step=256 for 256 patches means no overlap
patches_img = patches_img[:,:,0,:,:,:]
patched_prediction = []
for i in range(patches_img.shape[0]):
for j in range(patches_img.shape[1]):
single_patch_img = patches_img[i,j,:,:,:]
single_patch_img = single_patch_img/255
single_patch_img = np.expand_dims(single_patch_img, axis=0)
pred = model.predict(single_patch_img)
# Postprocess the mask
pred = np.argmax(pred, axis=3)
#print(pred.shape)
pred = pred[0, :,:]
patched_prediction.append(pred)
patched_prediction = np.reshape(patched_prediction, [patches_img.shape[0], patches_img.shape[1],
patches_img.shape[2], patches_img.shape[3]])
unpatched_prediction = unpatchify(patched_prediction, (image.shape[0], image.shape[1]))
unpatched_prediction = targets_classes_colors[unpatched_prediction]
return 'Predicted Masked Image', unpatched_prediction
targets_classes_colors = np.array([[ 0, 0, 0],
[128, 64, 128],
[130, 76, 0],
[ 0, 102, 0],
[112, 103, 87],
[ 28, 42, 168],
[ 48, 41, 30],
[ 0, 50, 89],
[107, 142, 35],
[ 70, 70, 70],
[102, 102, 156],
[254, 228, 12],
[254, 148, 12],
[190, 153, 153],
[153, 153, 153],
[255, 22, 96],
[102, 51, 0],
[ 9, 143, 150],
[119, 11, 32],
[ 51, 51, 0],
[190, 250, 190],
[112, 150, 146],
[ 2, 135, 115],
[255, 0, 0]])
class_weights = {0: 0.1,
1: 0.1,
2: 2.171655596616696,
3: 0.1,
4: 0.1,
5: 2.2101197049812593,
6: 11.601519937899578,
7: 7.99072122367673,
8: 0.1,
9: 0.1,
10: 2.5426918173402457,
11: 11.187574445057574,
12: 241.57620214903147,
13: 9.234779790464515,
14: 1077.2745952165694,
15: 7.396021659003857,
16: 855.6730643687165,
17: 6.410869993189135,
18: 42.0186736125025,
19: 2.5648760196752947,
20: 4.089194047656931,
21: 27.984593442818955,
22: 2.0509251319694712}
weight_list = list(class_weights.values())
def weighted_categorical_crossentropy(weights):
weights = weight_list
def wcce(y_true, y_pred):
Kweights = K.constant(weights)
if not tf.is_tensor(y_pred): y_pred = K.constant(y_pred)
y_true = K.cast(y_true, y_pred.dtype)
return bce_dice(y_true, y_pred) * K.sum(y_true * Kweights, axis=-1)
return wcce
# Load the model
#model = tf.keras.models.load_model("model.h5", custom_objects={"jacard":jacard, "wcce":weighted_categorical_crossentropy})
#model = tf.keras.models.load_model("model_2.h5", custom_objects={"jacard":jacard, "bce_dice":bce_dice})
model = model.load_weights("model_2_A (1).h5")
# Create a user interface for the model
my_app = gr.Blocks()
with my_app:
gr.Markdown("Statellite Image Segmentation Application UI with Gradio")
with gr.Tabs():
with gr.TabItem("Select your image"):
with gr.Row():
with gr.Column():
img_source = gr.Image(label="Please select source Image")
source_image_loader = gr.Button("Load above Image")
with gr.Column():
output_label = gr.Label(label="Image Info")
img_output = gr.Image(label="Image Output")
source_image_loader.click(
predict_2,
[
img_source
],
[
output_label,
img_output
]
)
my_app.launch(debug=True, share=True)
my_app.close()