Spaces:
Build error
Build error
| import gradio as gr | |
| from PIL import Image | |
| from patchify import patchify, unpatchify | |
| import numpy as np | |
| from skimage.io import imshow, imsave | |
| import tensorflow | |
| import tensorflow as tf | |
| from tensorflow.keras import backend as K | |
| from tensorflow.keras.models import Model | |
| from tensorflow.keras.optimizers import Adam | |
| from tensorflow.keras.metrics import MeanIoU | |
| from tensorflow.keras.utils import normalize, to_categorical | |
| from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate, Conv2DTranspose, BatchNormalization, Dropout, Lambda | |
| from tensorflow.keras import layers | |
| size = 1024 | |
| pach_size = 256 | |
| def jacard(y_true, y_pred): | |
| y_true_c = K.flatten(y_true) | |
| y_pred_c = K.flatten(y_pred) | |
| intersection = K.sum(y_true_c * y_pred_c) | |
| return (intersection + 1.0) / (K.sum(y_true_c) + K.sum(y_pred_c) - intersection + 1.0) | |
| def bce_dice(y_true, y_pred): | |
| bce = tf.keras.losses.BinaryCrossentropy() | |
| return bce(y_true, y_pred) - K.log(jacard(y_true, y_pred)) | |
| def upsample(X,X_side): | |
| """ | |
| Upsampling and concatination with the side path | |
| """ | |
| X = Conv2DTranspose(int(X.shape[1]/2), (3, 3), strides=(2, 2), padding='same')(X) | |
| #X = tf.keras.layers.UpSampling2D((2,2))(X) | |
| concat = tf.keras.layers.Concatenate()([X,X_side]) | |
| return concat | |
| def gating_signal(input, out_size, batch_norm=False): | |
| """ | |
| resize the down layer feature map into the same dimension as the up layer feature map | |
| using 1x1 conv | |
| :return: the gating feature map with the same dimension of the up layer feature map | |
| """ | |
| x = layers.Conv2D(out_size, (1, 1), padding='same')(input) | |
| if batch_norm: | |
| x = layers.BatchNormalization()(x) | |
| x = layers.Activation('relu')(x) | |
| return x | |
| def attention_block(x, gating, inter_shape): | |
| shape_x = K.int_shape(x) | |
| shape_g = K.int_shape(gating) | |
| # Getting the x signal to the same shape as the gating signal | |
| theta_x = layers.Conv2D(inter_shape, (2, 2), strides=(2, 2), padding='same')(x) # 16 | |
| shape_theta_x = K.int_shape(theta_x) | |
| # Getting the gating signal to the same number of filters as the inter_shape | |
| phi_g = layers.Conv2D(inter_shape, (1, 1), padding='same')(gating) | |
| upsample_g = layers.Conv2DTranspose(inter_shape, (3, 3), | |
| strides=(shape_theta_x[1] // shape_g[1], shape_theta_x[2] // shape_g[2]), | |
| padding='same')(phi_g) # 16 | |
| concat_xg = layers.add([upsample_g, theta_x]) | |
| act_xg = layers.Activation('relu')(concat_xg) | |
| psi = layers.Conv2D(1, (1, 1), padding='same')(act_xg) | |
| sigmoid_xg = layers.Activation('sigmoid')(psi) | |
| shape_sigmoid = K.int_shape(sigmoid_xg) | |
| upsample_psi = layers.UpSampling2D(size=(shape_x[1] // shape_sigmoid[1], shape_x[2] // shape_sigmoid[2]))(sigmoid_xg) # 32 | |
| upsample_psi = repeat_elem(upsample_psi, shape_x[3]) | |
| y = layers.multiply([upsample_psi, x]) | |
| result = layers.Conv2D(shape_x[3], (1, 1), padding='same')(y) | |
| result_bn = layers.BatchNormalization()(result) | |
| return result_bn | |
| def repeat_elem(tensor, rep): | |
| # lambda function to repeat Repeats the elements of a tensor along an axis | |
| #by a factor of rep. | |
| # If tensor has shape (None, 256,256,3), lambda will return a tensor of shape | |
| #(None, 256,256,6), if specified axis=3 and rep=2. | |
| return layers.Lambda(lambda x, repnum: K.repeat_elements(x, repnum, axis=3), | |
| arguments={'repnum': rep})(tensor) | |
| activation_funtion = 'relu' | |
| recurrent_repeats = 2 * 4 | |
| FILTER_NUM = 4 * 4 | |
| axis = 3 | |
| act_func = 'relu' | |
| filters = 64 | |
| def encoder(inputs, input_tensor): | |
| #Contraction path | |
| conv_1 = Conv2D(filters, (3, 3), activation='relu', padding='same')(inputs) | |
| conv_1 = BatchNormalization()(conv_1) | |
| conv_1 = Dropout(0.1)(conv_1) | |
| conv_1 = Conv2D(filters, (3, 3), activation='relu', padding='same')(conv_1) | |
| conv_1 = BatchNormalization()(conv_1) | |
| pool_1 = MaxPooling2D((2, 2))(conv_1) | |
| conv_2 = Conv2D(2*filters, (3, 3), activation='relu', padding='same')(pool_1) | |
| conv_2 = BatchNormalization()(conv_2) | |
| conv_2 = Dropout(0.1)(conv_2) | |
| conv_2 = Conv2D(2*filters, (3, 3), activation='relu', padding='same')(conv_2) | |
| conv_2 = BatchNormalization()(conv_2) | |
| pool_2 = MaxPooling2D((2, 2))(conv_2) | |
| conv_3 = Conv2D(4*filters, (3, 3), activation='relu', padding='same')(pool_2) | |
| conv_3 = BatchNormalization()(conv_3) | |
| conv_3 = Dropout(0.1)(conv_3) | |
| conv_3 = Conv2D(4*filters, (3, 3), activation='relu', padding='same')(conv_3) | |
| conv_3 = BatchNormalization()(conv_3) | |
| pool_3 = MaxPooling2D((2, 2))(conv_3) | |
| conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same')(pool_3) | |
| conv_4 = BatchNormalization()(conv_4) | |
| conv_4 = Dropout(0.1)(conv_4) | |
| conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same')(conv_4) | |
| conv_4 = BatchNormalization()(conv_4) | |
| pool_4 = MaxPooling2D(pool_size=(2, 2))(conv_4) | |
| conv_5 = Conv2D(16*filters, (3, 3), activation='relu', padding='same')(pool_4) | |
| conv_5 = BatchNormalization()(conv_5) | |
| conv_5 = Dropout(0.1)(conv_5) | |
| model = Model(inputs=[input_tensor], outputs=[conv_5, conv_4, conv_3, conv_2, conv_1]) | |
| return model | |
| def encoder_unet(inputs): | |
| ## Project residual | |
| # residual = layers.Conv2D(filters, 1, strides=2, padding="same")( | |
| # previous_block_activation | |
| # ) | |
| #x = layers.add([x, residual]) # Add back residual | |
| #Contraction path | |
| #Contraction path | |
| conv_11 = Conv2D(filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(inputs) | |
| conv_11 = BatchNormalization()(conv_11) | |
| conv_11 = Dropout(0.2)(conv_11) | |
| conv_1 = Conv2D(filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_11) | |
| conv_1 = BatchNormalization()(conv_1) | |
| #conv_1 = concatenate([resblock(conv_11, 64), conv_1], axis=3) | |
| #conv_1 = Dropout(0.2)(conv_1) | |
| #pool_1 = layers.GaussianNoise(0.1+np.random.random()*0.4)(conv_1) | |
| pool_1 = MaxPooling2D((2, 2))(conv_1) | |
| conv_2 = Conv2D(2*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(pool_1) | |
| conv_2 = BatchNormalization()(conv_2) | |
| conv_2 = Dropout(0.2)(conv_2) | |
| conv_2 = Conv2D(2*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_2) | |
| conv_2 = BatchNormalization()(conv_2) | |
| #conv_2 = Dropout(0.2)(conv_2) | |
| #conv_2 = Conv2D(2*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_2) | |
| #conv_2 = concatenate([resblock(pool_1, 128), conv_2], axis=3) | |
| #conv_2 = BatchNormalization()(conv_2) | |
| #conv_2 = Dropout(0.2)(conv_2) | |
| #pool_2 = layers.GaussianNoise(0.1+np.random.random()*0.4)(conv_2) | |
| pool_2 = MaxPooling2D((2, 2))(conv_2) | |
| conv_3 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(pool_2) | |
| conv_3 = BatchNormalization()(conv_3) | |
| conv_3 = Dropout(0.2)(conv_3) | |
| conv_3 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_3) | |
| conv_3 = BatchNormalization()(conv_3) | |
| #conv_3 = Dropout(0.2)(conv_3) | |
| #conv_3 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_3) | |
| #conv_3 = BatchNormalization()(conv_3) | |
| #conv_3 = Dropout(0.2)(conv_3) | |
| conv_3 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_3) | |
| conv_3 = BatchNormalization()(conv_3) | |
| #conv_3 = concatenate([resblock(pool_2, 256), conv_3], axis=3) | |
| #conv_3 = Dropout(0.2)(conv_3) | |
| #pool_3 = layers.GaussianNoise(0.1+np.random.random()*0.4)(conv_3) | |
| pool_3 = MaxPooling2D((2, 2))(conv_3) | |
| conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(pool_3) | |
| conv_4 = BatchNormalization()(conv_4) | |
| conv_4 = Dropout(0.2)(conv_4) | |
| #conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_4) | |
| #conv_4 = BatchNormalization()(conv_4) | |
| #conv_4 = Dropout(0.2)(conv_4) | |
| conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_4) | |
| conv_4 = BatchNormalization()(conv_4) | |
| conv_4 = Dropout(0.2)(conv_4) | |
| #conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_4) | |
| #conv_4 = BatchNormalization()(conv_4) | |
| #conv_4 = Dropout(0.2)(conv_4) | |
| conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_4) | |
| conv_4 = BatchNormalization()(conv_4) | |
| #conv_4 = concatenate([resblock(pool_3, 512), conv_4], axis=3) | |
| #conv_4 = Dropout(0.2)(conv_4) | |
| #pool_4 = layers.GaussianNoise(0.1+np.random.random()*0.4)(conv_4) | |
| pool_4 = MaxPooling2D(pool_size=(2, 2))(conv_4) | |
| conv_44 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(pool_4) | |
| conv_44 = BatchNormalization()(conv_44) | |
| conv_44 = Dropout(0.2)(conv_44) | |
| conv_44 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_44) | |
| conv_44 = BatchNormalization()(conv_44) | |
| conv_44 = Dropout(0.2)(conv_44) | |
| #conv_44 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_44) | |
| #conv_44 = BatchNormalization()(conv_44) | |
| #conv_44 = Dropout(0.2)(conv_44) | |
| #conv_4 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_4) | |
| #conv_4 = BatchNormalization()(conv_4) | |
| #conv_4 = Dropout(0.2)(conv_4) | |
| conv_44 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_44) | |
| conv_44 = BatchNormalization()(conv_44) | |
| #conv_4 = concatenate([resblock(pool_3, 512), conv_4], axis=3) | |
| #conv_44 = Dropout(0.2)(conv_44) | |
| #pool_4 = layers.GaussianNoise(0.1+np.random.random()*0.4)(conv_4) | |
| pool_44 = MaxPooling2D(pool_size=(2, 2))(conv_44) | |
| conv_5 = Conv2D(16*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(pool_44) | |
| conv_5 = BatchNormalization()(conv_5) | |
| #conv_5 = Conv2D(16*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_5) | |
| #conv_5 = BatchNormalization()(conv_5) | |
| #conv_5 = concatenate([resblock(pool_4, 1024), conv_5], axis=3) | |
| #conv_5 = Dropout(0.2)(conv_5) | |
| #conv_5 = layers.GaussianNoise(0.1)(conv_5) | |
| model = Model(inputs=[inputs], outputs=[conv_5, conv_44, conv_3, conv_2, conv_1]) | |
| return model | |
| def decoder(inputs, input_tensor): | |
| #Expansive path | |
| gating_64 = gating_signal(inputs[0], 16*FILTER_NUM, True) | |
| att_64 = attention_block(inputs[1], gating_64, 16*FILTER_NUM) | |
| up_stage_2 = upsample(inputs[0],inputs[1]) | |
| #u6 = Conv2DTranspose(512, (2, 2), strides=(2, 2), padding='same')(inputs[0]) | |
| u6 = concatenate([up_stage_2, att_64], axis=3) | |
| #u6 = concatenate([att_5, u6]) | |
| #conv_6 = Conv2D(512, (3, 3), activation='relu', padding='same')(u6) | |
| #conv_6 = BatchNormalization()(conv_6) | |
| #conv_6 = Dropout(0.2)(conv_6) | |
| #conv_6 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv_6) | |
| #conv_6 = Dropout(0.2)(conv_6) | |
| conv_6 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(u6) | |
| conv_6 = BatchNormalization()(conv_6) | |
| #conv_6 = Dropout(0.2)(conv_6) | |
| conv_6 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_6) | |
| conv_6 = BatchNormalization()(conv_6) | |
| #conv_6 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_6) | |
| #conv_6 = BatchNormalization()(conv_6) | |
| #conv_6 = Dropout(0.2)(conv_6) | |
| #conv_6 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_6) | |
| #conv_6 = BatchNormalization()(conv_6) | |
| #conv_6 = Dropout(0.2)(conv_6) | |
| conv_6 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_6) | |
| conv_6 = BatchNormalization()(conv_6) | |
| conv_6 = Dropout(0.2)(conv_6) | |
| up_stage_22 = Conv2DTranspose(int(conv_6.shape[1]/2), (3, 3), strides=(2, 2), padding='same')(conv_6) | |
| conv_66 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(up_stage_22) | |
| conv_66 = BatchNormalization()(conv_66) | |
| #conv_6 = Dropout(0.2)(conv_6) | |
| #conv_66 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_66) | |
| #conv_66 = BatchNormalization()(conv_66) | |
| conv_66 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_66) | |
| conv_66 = BatchNormalization()(conv_66) | |
| #conv_6 = Dropout(0.2)(conv_6) | |
| #conv_66 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_66) | |
| #conv_66 = BatchNormalization()(conv_66) | |
| #conv_6 = Dropout(0.2)(conv_6) | |
| conv_66 = Conv2D(8*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_66) | |
| conv_66 = BatchNormalization()(conv_66) | |
| conv_66 = Dropout(0.2)(conv_66) | |
| gating_128 = gating_signal(conv_66, 8*FILTER_NUM, True) | |
| att_128 = attention_block(inputs[2], gating_128, 8*FILTER_NUM) | |
| up_stage_3 = upsample(conv_66,inputs[2]) | |
| #u7 = Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(conv_6) | |
| u7 = concatenate([up_stage_3, att_128], axis=3) | |
| #conv_7 = Conv2D(256, (3, 3), activation='relu', padding='same')(u7) | |
| #conv_7 = BatchNormalization()(conv_7) | |
| #conv_7 = Dropout(0.2)(conv_7) | |
| #conv_7 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv_7) | |
| #conv_7 = Dropout(0.2)(conv_7) | |
| conv_7 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(u7) | |
| conv_7 = BatchNormalization()(conv_7) | |
| #conv_7 = Dropout(0.2)(conv_7) | |
| conv_7 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_7) | |
| conv_7 = BatchNormalization()(conv_7) | |
| #conv_7 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_7) | |
| #conv_7 = BatchNormalization()(conv_7) | |
| #conv_7 = Dropout(0.2)(conv_7) | |
| conv_7 = Conv2D(4*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_7) | |
| conv_7 = BatchNormalization()(conv_7) | |
| conv_7 = Dropout(0.2)(conv_7) | |
| gating_256 = gating_signal(conv_7, 4*FILTER_NUM, True) | |
| att_256 = attention_block(inputs[3], gating_256, 4*FILTER_NUM) | |
| up_stage_4 = upsample(conv_7,inputs[3]) | |
| #u8 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(conv_7) | |
| u8 = concatenate([up_stage_4, att_256], axis=3) | |
| #conv_8 = Conv2D(128, (3, 3), activation='relu', padding='same')(u8) | |
| #conv_8 = BatchNormalization()(conv_8) | |
| #conv_8 = Dropout(0.1)(conv_8) | |
| conv_8 = Conv2D(2*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(u8) | |
| conv_8 = BatchNormalization()(conv_8) | |
| #conv_8 = Dropout(0.2)(conv_8) | |
| #conv_8 = Conv2D(2*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(u8) | |
| #conv_8 = BatchNormalization()(conv_8) | |
| #conv_8 = Dropout(0.2)(conv_8) | |
| conv_8 = Conv2D(2*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_8) | |
| conv_8 = BatchNormalization()(conv_8) | |
| conv_8 = Dropout(0.2)(conv_8) | |
| gating_512 = gating_signal(conv_8, 2*FILTER_NUM, True) | |
| att_512 = attention_block(inputs[4], gating_512, 2*FILTER_NUM) | |
| up_stage_5 = upsample(conv_8,inputs[4]) | |
| #u9 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(conv_8) | |
| u9 = concatenate([up_stage_5, att_512], axis=3) | |
| conv_9 = Conv2D(1*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(u9) | |
| conv_9 = BatchNormalization()(conv_9) | |
| #conv_9 = Dropout(0.2)(conv_9) | |
| conv_9 = Conv2D(1*filters, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal')(conv_9) | |
| conv_9 = BatchNormalization()(conv_9) | |
| conv_9 = Dropout(0.2)(conv_9) | |
| model = Model(inputs=[input_tensor], outputs=[conv_9]) | |
| return model | |
| def unet_2( n_classes=2, height=pach_size, width=pach_size, channels=3, metrics = ['accuracy']): | |
| inputs = Input((height, width, channels)) | |
| encode = encoder_unet(inputs) | |
| decode = decoder(encode.output, inputs) | |
| outputs = decode.output | |
| #outputs = Conv2D(n_classes, (1, 1), activation='softmax', padding='same', kernel_initializer='he_normal')(decode.output) | |
| #outputs = tf.reshape(encode_2.output[0], [None, 16, 16, 256]) | |
| model = Model(inputs=[inputs], outputs=[outputs]) | |
| if n_classes <= 2: | |
| model.compile(optimizer = Adam(lr = 1e-3), loss = 'binary_crossentropy', metrics = metrics) | |
| elif n_classes > 2: | |
| model.compile(optimizer = Adam(lr = 1e-3), loss = 'categorical_crossentropy', metrics = metrics) | |
| #model.summary() | |
| return model | |
| def unet_enssemble(n_classes=2, height=64, width=64, channels=3, metrics = ['accuracy']): | |
| x = Input((height, width, channels)) | |
| model10 = unet_2( n_classes=n_classes, height = height, width = width, channels = 3) | |
| out = model10(x) | |
| outputs = Conv2D(n_classes, (1, 1), activation='softmax', padding='same')(out) | |
| #model = Model(inputs=[inputs], outputs=[encode.output]) | |
| model = Model(inputs=[x], outputs=[outputs]) | |
| #model = Model(inputs=[model7.input, model11.input], outputs=[outputs]) | |
| if n_classes <= 2: | |
| model.compile(optimizer = Adam(lr = 1e-3), loss = 'binary_crossentropy', metrics = metrics) | |
| elif n_classes > 2: | |
| model.compile(optimizer = Adam(lr = 1e-3), loss = 'categorical_crossentropy', metrics = metrics) | |
| #if summary: | |
| # model.summary() | |
| return model | |
| n_classes = 23 | |
| n_channels = 3 | |
| model = unet_enssemble(n_classes=n_classes, height = pach_size, width = pach_size, channels = n_channels) | |
| size = 1024 | |
| pach_size = 256 | |
| def predict_2(image): | |
| image = Image.fromarray(image).resize((size,size)) | |
| image = np.array(image) | |
| stride = 1 | |
| steps = int(pach_size/stride) | |
| patches_img = patchify(image, (pach_size, pach_size, 3), step=steps) #Step=256 for 256 patches means no overlap | |
| patches_img = patches_img[:,:,0,:,:,:] | |
| patched_prediction = [] | |
| for i in range(patches_img.shape[0]): | |
| for j in range(patches_img.shape[1]): | |
| single_patch_img = patches_img[i,j,:,:,:] | |
| single_patch_img = single_patch_img/255 | |
| single_patch_img = np.expand_dims(single_patch_img, axis=0) | |
| pred = model.predict(single_patch_img) | |
| # Postprocess the mask | |
| pred = np.argmax(pred, axis=3) | |
| #print(pred.shape) | |
| pred = pred[0, :,:] | |
| patched_prediction.append(pred) | |
| patched_prediction = np.reshape(patched_prediction, [patches_img.shape[0], patches_img.shape[1], | |
| patches_img.shape[2], patches_img.shape[3]]) | |
| unpatched_prediction = unpatchify(patched_prediction, (image.shape[0], image.shape[1])) | |
| unpatched_prediction = targets_classes_colors[unpatched_prediction] | |
| return 'Predicted Masked Image', unpatched_prediction | |
| targets_classes_colors = np.array([[ 0, 0, 0], | |
| [128, 64, 128], | |
| [130, 76, 0], | |
| [ 0, 102, 0], | |
| [112, 103, 87], | |
| [ 28, 42, 168], | |
| [ 48, 41, 30], | |
| [ 0, 50, 89], | |
| [107, 142, 35], | |
| [ 70, 70, 70], | |
| [102, 102, 156], | |
| [254, 228, 12], | |
| [254, 148, 12], | |
| [190, 153, 153], | |
| [153, 153, 153], | |
| [255, 22, 96], | |
| [102, 51, 0], | |
| [ 9, 143, 150], | |
| [119, 11, 32], | |
| [ 51, 51, 0], | |
| [190, 250, 190], | |
| [112, 150, 146], | |
| [ 2, 135, 115], | |
| [255, 0, 0]]) | |
| class_weights = {0: 0.1, | |
| 1: 0.1, | |
| 2: 2.171655596616696, | |
| 3: 0.1, | |
| 4: 0.1, | |
| 5: 2.2101197049812593, | |
| 6: 11.601519937899578, | |
| 7: 7.99072122367673, | |
| 8: 0.1, | |
| 9: 0.1, | |
| 10: 2.5426918173402457, | |
| 11: 11.187574445057574, | |
| 12: 241.57620214903147, | |
| 13: 9.234779790464515, | |
| 14: 1077.2745952165694, | |
| 15: 7.396021659003857, | |
| 16: 855.6730643687165, | |
| 17: 6.410869993189135, | |
| 18: 42.0186736125025, | |
| 19: 2.5648760196752947, | |
| 20: 4.089194047656931, | |
| 21: 27.984593442818955, | |
| 22: 2.0509251319694712} | |
| weight_list = list(class_weights.values()) | |
| def weighted_categorical_crossentropy(weights): | |
| weights = weight_list | |
| def wcce(y_true, y_pred): | |
| Kweights = K.constant(weights) | |
| if not tf.is_tensor(y_pred): y_pred = K.constant(y_pred) | |
| y_true = K.cast(y_true, y_pred.dtype) | |
| return bce_dice(y_true, y_pred) * K.sum(y_true * Kweights, axis=-1) | |
| return wcce | |
| # Load the model | |
| #model = tf.keras.models.load_model("model.h5", custom_objects={"jacard":jacard, "wcce":weighted_categorical_crossentropy}) | |
| #model = tf.keras.models.load_model("model_2.h5", custom_objects={"jacard":jacard, "bce_dice":bce_dice}) | |
| model = model.load_weights("model_2_A (1).h5") | |
| # Create a user interface for the model | |
| my_app = gr.Blocks() | |
| with my_app: | |
| gr.Markdown("Statellite Image Segmentation Application UI with Gradio") | |
| with gr.Tabs(): | |
| with gr.TabItem("Select your image"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| img_source = gr.Image(label="Please select source Image") | |
| source_image_loader = gr.Button("Load above Image") | |
| with gr.Column(): | |
| output_label = gr.Label(label="Image Info") | |
| img_output = gr.Image(label="Image Output") | |
| source_image_loader.click( | |
| predict_2, | |
| [ | |
| img_source | |
| ], | |
| [ | |
| output_label, | |
| img_output | |
| ] | |
| ) | |
| my_app.launch(debug=True, share=True) | |
| my_app.close() |