File size: 11,934 Bytes
22f9e0d
 
 
 
c283445
 
 
 
 
 
 
 
 
 
 
 
22f9e0d
 
 
 
c283445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22f9e0d
 
c283445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22f9e0d
c283445
 
22f9e0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c283445
22f9e0d
 
 
 
 
c283445
22f9e0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c283445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22f9e0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
from datasets import load_dataset
import json
import gradio as gr

# Load experiments.json to get model configurations
with open('experiments.json', 'r') as f:
    EXPERIMENTS = json.load(f)

# Get all unique benchmark subsets from experiments.json
BENCHMARKS = []
for model_config in EXPERIMENTS.values():
    for benchmark in model_config['benchmarks'].values():
        subset = benchmark['subset']
        if subset not in BENCHMARKS:
            BENCHMARKS.append(subset)

from datasets import get_dataset_split_names

# Add this near the top with other constants
REPO_OPTIONS = [
    "OpenEvals/details_gpt-4o_private",
    "OpenEvals/details_claude-3-7-sonnet-20250219_private",
    "OpenEvals/details_o3-mini-2025-01-31_private",
    "OpenEvals/details_moonshotai__Moonlight-16B-A3B-Instruct_private",
    "OpenEvals/details_meta-llama__Llama-3.3-70B-Instruct_private",
    "OpenEvals/details_deepseek-ai__DeepSeek-R1-Distill-Llama-70B_private",
    "OpenEvals/details_qihoo360__TinyR1-32B-Preview_private",
    "OpenEvals/details_openai__gpt-4.5-preview-2025-02-27_private",
    "OpenEvals/details_deepseek-ai__DeepSeek-R1-Distill-Qwen-32B_private",
    "OpenEvals/details_openai__deepseek-ai__DeepSeek-R1_private",
    "OpenEvals/details_Qwen__QwQ-32B_private",
    "OpenEvals/details_google__gemma-3-1b-it_private",
    "OpenEvals/details_google__gemma-3-12b-it_private",
    "OpenEvals/details_google__gemma-3-27b-it_private",
    "OpenEvals/details_openai__deepseek-ai__DeepSeek-V3-0324_private",
    "OpenEvals/details_openai__deepseek-ai__DeepSeek-V3_private",
    "OpenEvals/details_meta-llama__Llama-4-Scout-17B-16E-Instruct_private",
    "OpenEvals/details_meta-llama__Llama-4-Maverick-17B-128E-Instruct-FP8_private"
]

def get_model_name_from_repo(repo):
    # Extract model name from repository path
    # Example: "OpenEvals/details_meta-llama__Llama-4-Maverick-17B-128E-Instruct-FP8_private"
    # -> "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
    parts = repo.split('/')
    model_name = parts[1].replace('details_', '').replace('_private', '')
    # Convert double underscores back to forward slashes
    model_name = model_name.replace('__', '/')
    return model_name

def get_available_benchmarks(repo):
    model_name = get_model_name_from_repo(repo)
    print(model_name)
    if not model_name or model_name not in EXPERIMENTS:
        return []
    
    model_config = EXPERIMENTS[model_name]
    print(model_config)
    return [benchmark['subset'] for benchmark in model_config['benchmarks'].values()]

def get_available_splits(repo, benchmark):
    if not benchmark:
        return []
    return get_dataset_split_names(repo, config_name=benchmark.replace("|", "_").replace(":", "_"))

def load_details_and_results(repo, subset, split):
    def worker(example):
        example["predictions"] = example["predictions"]
        example["gold"] = example["gold"][0]
        example["metrics"] = example["metrics"]
        return example

    details = load_dataset(repo, subset.replace("|", "_").replace(":", "_"), split=split)
    results = load_dataset(repo, "results", split=split)
    results = eval(results[0]["results"])

    columns_to_keep = ['full_prompt', 'gold', 'metrics', 'predictions']
    details = details.select_columns(columns_to_keep)
    details = details.map(worker)

    return details, results

def update_splits(repo, benchmark):
    splits = get_available_splits(repo, benchmark)
    return gr.Dropdown(choices=splits, value=splits[0] if splits else None)

def display_model_details(repo_name, benchmark, split, example_index):
    try:
        # Load details for the specific model, benchmark and split
        details, _ = load_details_and_results(repo_name, benchmark, split)
        example = details[example_index]
    except Exception as e:
        return f"Error loading model details: {str(e)}"
    
    # Create HTML output
    html_output = "<div style='max-width: 800px; margin: 0 auto;'>\n\n"
    
    # Ground Truth section
    html_output += "<div style='background: #e6f3e6; padding: 20px; border-radius: 10px; margin-bottom: 20px;'>\n"
    html_output += "<h3 style='margin-top: 0;'>Ground Truth</h3>\n"
    html_output += "<div style='overflow-x: auto; max-width: 100%;'>\n"
    html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 0;'><code>{example['gold']}</code></pre>\n"
    html_output += "</div>\n"
    html_output += "</div>\n"
    
    # Model output section
    html_output += "<div style='background: #f5f5f5; padding: 20px; margin-bottom: 20px; border-radius: 10px;'>\n"
    html_output += f"<h2 style='margin-top: 0;'>{repo_name}</h2>\n"
    html_output += f"<p style='color: #666;'>Split: {split}</p>\n"
    
    # Prompt section
    html_output += "<details style='margin-bottom: 15px;'>\n"
    html_output += "<summary><h3 style='display: inline; margin: 0;'>Prompt</h3></summary>\n"
    html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n"
    html_output += "<div style='overflow-x: auto;'>\n"
    
    prompt = example['full_prompt']
    if isinstance(prompt, list):
        for msg in prompt:
            if isinstance(msg, dict) and 'role' in msg and 'content' in msg:
                role = msg['role'].title()
                content = msg['content'].replace('<', '&lt;').replace('>', '&gt;')
                html_output += f"<div style='margin-bottom: 10px;'>\n"
                html_output += f"<strong>{role}:</strong>\n"
                html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0; background: #f8f8f8; padding: 10px; border-radius: 5px;'><code>{content}</code></pre>\n"
                html_output += "</div>\n"
            else:
                content = str(msg).replace('<', '&lt;').replace('>', '&gt;')
                html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0; background: #f8f8f8; padding: 10px; border-radius: 5px;'><code>{content}</code></pre>\n"
    else:
        prompt_text = str(prompt).replace('<', '&lt;').replace('>', '&gt;')
        html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 0; background: #f8f8f8; padding: 10px; border-radius: 5px;'><code>{prompt_text}</code></pre>\n"
    
    html_output += "</div>\n"
    html_output += "</div>\n"
    html_output += "</details>\n\n"
    
    # Metrics section
    html_output += "<details open style='margin-bottom: 15px;'>\n"
    html_output += "<summary><h3 style='display: inline; margin: 0;'>Metrics</h3></summary>\n"
    metrics = example['metrics']
    if isinstance(metrics, str):
        metrics = eval(metrics)
    html_output += "<div style='overflow-x: auto;'>\n"
    html_output += "<table style='width: 100%; margin: 10px 0; border-collapse: collapse;'>\n"
    for key, value in metrics.items():
        if isinstance(value, float):
            value = f"{value:.3f}"
        html_output += f"<tr><td style='padding: 5px; border-bottom: 1px solid #ddd;'><strong>{key}</strong></td><td style='padding: 5px; border-bottom: 1px solid #ddd;'>{value}</td></tr>\n"
    html_output += "</table>\n"
    html_output += "</div>\n"
    html_output += "</details>\n\n"
    
    # Prediction section
    prediction = example['predictions'][0] if example['predictions'] else ''
    html_output += "<details open style='margin-bottom: 15px;'>\n"
    html_output += "<summary><h3 style='display: inline; margin: 0;'>Prediction</h3>"
    word_count = len(prediction.split())
    html_output += f"<span style='color: #666; font-size: 0.8em; margin-left: 10px;'>({word_count} words)</span>"
    html_output += "</summary>\n"
    html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n"
    html_output += "<div style='overflow-x: auto;'>\n"
    prediction = prediction.replace('<', '&lt;').replace('>', '&gt;')
    html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 0;'><code>{prediction}</code></pre>\n"
    html_output += "</div>\n"
    html_output += "</div>\n"
    html_output += "</details>\n"
    
    html_output += "</div>\n</div>"
    return html_output

# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# Model Generation Details")
    gr.Markdown("View detailed outputs for a specific model")
    
    with gr.Row():
        repo_select = gr.Radio(
            choices=["Choose from list", "Custom"],
            label="Repository Selection Method",
            value="Choose from list",
            info="Select how you want to specify the repository"
        )

    with gr.Row():
        repo_dropdown = gr.Dropdown(
            choices=REPO_OPTIONS,
            label="Repository Name",
            value=REPO_OPTIONS[0] if REPO_OPTIONS else None,
            visible=True,
            info="Select from predefined repositories"
        )
        repo_custom = gr.Textbox(
            label="Custom Repository Name",
            placeholder="e.g. OpenEvals/details_custom_model_private",
            visible=False,
            info="Enter custom repository name"
        )

    with gr.Row():
        benchmark = gr.Dropdown(
            label="Benchmark",
            choices=[],
            info="Select the benchmark subset"
        )
        split = gr.Dropdown(
            label="Split",
            choices=[],
            info="Select evaluation."
        )
    
    with gr.Row():
        example_index = gr.Number(
            label="Example Index",
            value=0,
            step=1,
            info="Navigate through different examples"
        )
        submit_btn = gr.Button("Show Results", variant="primary")
    
    # Add this function to handle visibility toggling
    def toggle_repo_input(choice):
        return {
            repo_dropdown: gr.update(visible=(choice == "Choose from list")),
            repo_custom: gr.update(visible=(choice == "Custom"))
        }

    # Add this function to get the active repository name
    def get_active_repo(selection_method, dropdown_value, custom_value):
        return custom_value if selection_method == "Custom" else dropdown_value

    # Update the event handlers
    repo_select.change(
        fn=toggle_repo_input,
        inputs=[repo_select],
        outputs=[repo_dropdown, repo_custom]
    )

    # Update the repository change handler to update available benchmarks
    def update_benchmarks(selection_method, dropdown_value, custom_value):
        repo = get_active_repo(selection_method, dropdown_value, custom_value)
        available_benchmarks = get_available_benchmarks(repo)
        print(available_benchmarks)
        return gr.Dropdown(choices=available_benchmarks, value=available_benchmarks[0] if available_benchmarks else None)

    repo_dropdown.change(
        fn=update_benchmarks,
        inputs=[repo_select, repo_dropdown, repo_custom],
        outputs=benchmark
    )

    repo_custom.change(
        fn=update_benchmarks,
        inputs=[repo_select, repo_dropdown, repo_custom],
        outputs=benchmark
    )

    # Update the benchmark change handler
    benchmark.change(
        fn=lambda selection_method, dropdown, custom, bench: update_splits(
            get_active_repo(selection_method, dropdown, custom), 
            bench
        ),
        inputs=[repo_select, repo_dropdown, repo_custom, benchmark],
        outputs=split
    )

    # Display results
    output = gr.HTML()
    submit_btn.click(
        fn=lambda selection_method, dropdown, custom, bench, split_val, idx: display_model_details(
            get_active_repo(selection_method, dropdown, custom),
            bench,
            split_val,
            idx
        ),
        inputs=[repo_select, repo_dropdown, repo_custom, benchmark, split, example_index],
        outputs=output
    )

if __name__ == "__main__":
    demo.launch()