Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
# Load the model and tokenizer
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("machinelearningzuu/youtube-content-summarization")
|
6 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("machinelearningzuu/youtube-content-summarization")
|
7 |
+
|
8 |
+
# Define a function for summarization
|
9 |
+
def summarize_youtube_content(input_text):
|
10 |
+
# Use the pipeline for summarization
|
11 |
+
summarizer = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
|
12 |
+
summary = summarizer(input_text, max_length=150, min_length=30, do_sample=False)
|
13 |
+
return summary[0]['generated_text']
|
14 |
+
|
15 |
+
# Create a Gradio interface
|
16 |
+
interface = gr.Interface(
|
17 |
+
fn=summarize_youtube_content,
|
18 |
+
inputs=gr.Textbox(lines=10, placeholder="Paste YouTube transcript here..."),
|
19 |
+
outputs=gr.Textbox(lines=5, label="Summarized Content"),
|
20 |
+
title="YouTube Content Summarizer",
|
21 |
+
description="Paste the transcript of a YouTube video to generate a concise summary.",
|
22 |
+
)
|
23 |
+
|
24 |
+
# Launch the Gradio app
|
25 |
+
if __name__ == "__main__":
|
26 |
+
interface.launch()
|