Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -36,12 +36,38 @@ if hf_token:
|
|
36 |
else:
|
37 |
raise ValueError("HF_TOKEN environment variable not set.")
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
40 |
import gradio as gr
|
41 |
|
42 |
# Load the model and tokenizer
|
43 |
-
tokenizer = AutoTokenizer.from_pretrained("machinelearningzuu/youtube-content-summarization")
|
44 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("machinelearningzuu/youtube-content-summarization")
|
45 |
|
46 |
# Define a function for summarization
|
47 |
def summarize_youtube_content(input_text):
|
|
|
36 |
else:
|
37 |
raise ValueError("HF_TOKEN environment variable not set.")
|
38 |
|
39 |
+
# from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
40 |
+
# import gradio as gr
|
41 |
+
|
42 |
+
# # Load the model and tokenizer
|
43 |
+
# tokenizer = AutoTokenizer.from_pretrained("machinelearningzuu/youtube-content-summarization")
|
44 |
+
# model = AutoModelForSeq2SeqLM.from_pretrained("machinelearningzuu/youtube-content-summarization")
|
45 |
+
|
46 |
+
# # Define a function for summarization
|
47 |
+
# def summarize_youtube_content(input_text):
|
48 |
+
# # Use the pipeline for summarization
|
49 |
+
# summarizer = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
|
50 |
+
# summary = summarizer(input_text, max_length=150, min_length=30, do_sample=False)
|
51 |
+
# return summary[0]['generated_text']
|
52 |
+
|
53 |
+
# # Create a Gradio interface
|
54 |
+
# interface = gr.Interface(
|
55 |
+
# fn=summarize_youtube_content,
|
56 |
+
# inputs=gr.Textbox(lines=10, placeholder="Paste YouTube transcript here..."),
|
57 |
+
# outputs=gr.Textbox(lines=5, label="Summarized Content"),
|
58 |
+
# title="YouTube Content Summarizer",
|
59 |
+
# description="Paste the transcript of a YouTube video to generate a concise summary.",
|
60 |
+
# )
|
61 |
+
|
62 |
+
# # Launch the Gradio app
|
63 |
+
# if __name__ == "__main__":
|
64 |
+
# interface.launch()
|
65 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
66 |
import gradio as gr
|
67 |
|
68 |
# Load the model and tokenizer
|
69 |
+
tokenizer = AutoTokenizer.from_pretrained("machinelearningzuu/youtube-content-summarization-bart")
|
70 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("machinelearningzuu/youtube-content-summarization-bart")
|
71 |
|
72 |
# Define a function for summarization
|
73 |
def summarize_youtube_content(input_text):
|