import subprocess # Install required libraries subprocess.check_call(["pip", "install", "torch>=1.11.0"]) subprocess.check_call(["pip", "install", "transformers>=4.31.0"]) subprocess.check_call(["pip", "install", "diffusers>=0.14.0"]) subprocess.check_call(["pip", "install", "librosa"]) subprocess.check_call(["pip", "install", "accelerate>=0.20.1"]) subprocess.check_call(["pip", "install", "gradio>=3.35.2"]) subprocess.check_call(["pip", "install", "huggingface_hub"]) import os import threading import numpy as np import librosa import torch import gradio as gr from functools import lru_cache from transformers import pipeline from huggingface_hub import login from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler # Ensure required dependencies are installed def install_missing_packages(): required_packages = { "librosa": None, "diffusers": ">=0.14.0", "gradio": ">=3.35.2", "huggingface_hub": None, "accelerate": ">=0.20.1", "transformers": ">=4.31.0" } for package, version in required_packages.items(): try: __import__(package) except ImportError: package_name = f"{package}{version}" if version else package subprocess.check_call(["pip", "install", package_name]) install_missing_packages() # Get Hugging Face token for authentication hf_token = os.getenv("HF_TOKEN") if hf_token: login(hf_token) else: raise ValueError("HF_TOKEN environment variable not set.") # Load speech-to-text model (Whisper) speech_to_text = pipeline( "automatic-speech-recognition", model="openai/whisper-tiny", return_timestamps=True ) # Load Stable Diffusion model for text-to-image text_to_image = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") device = "cuda" if torch.cuda.is_available() else "cpu" text_to_image.to(device) text_to_image.enable_attention_slicing() text_to_image.safety_checker = None text_to_image.scheduler = DPMSolverMultistepScheduler.from_config(text_to_image.scheduler.config) # Preprocess audio file into NumPy array def preprocess_audio(audio_path): try: audio, sr = librosa.load(audio_path, sr=16000) # Resample to 16kHz return np.array(audio, dtype=np.float32) except Exception as e: return f"Error in preprocessing audio: {str(e)}" # Speech-to-text function with long-form transcription support @lru_cache(maxsize=10) def transcribe_audio(audio_path): try: audio_array = preprocess_audio(audio_path) if isinstance(audio_array, str): # Error message from preprocessing return audio_array result = speech_to_text(audio_array) # Combine text from multiple segments for long-form transcription transcription = " ".join(segment["text"] for segment in result["chunks"]) return transcription except Exception as e: return f"Error in transcription: {str(e)}" # Text-to-image function @lru_cache(maxsize=10) def generate_image_from_text(text): try: image = text_to_image(text, height=256, width=256).images[0] # Generate smaller images for speed return image except Exception as e: return f"Error in image generation: {str(e)}" # Combined processing function def process_audio_and_generate_results(audio_path): transcription_result = {"result": None} image_result = {"result": None} # Function to run transcription and image generation in parallel def transcription_thread(): transcription_result["result"] = transcribe_audio(audio_path) def image_generation_thread(): transcription = transcription_result["result"] if transcription and "Error" not in transcription: image_result["result"] = generate_image_from_text(transcription) # Start both tasks in parallel t1 = threading.Thread(target=transcription_thread) t2 = threading.Thread(target=image_generation_thread) t1.start() t2.start() t1.join() # Wait for transcription to finish t2.join() # Wait for image generation to finish transcription = transcription_result["result"] image = image_result["result"] if "Error" in transcription: return None, transcription if isinstance(image, str) and "Error" in image: return None, image return image, transcription # Gradio interface for speech-to-text speech_to_text_iface = gr.Interface( fn=transcribe_audio, inputs=gr.Audio(type="filepath", label="Upload audio file for transcription (WAV/MP3)"), outputs=gr.Textbox(label="Transcription"), title="Speech-to-Text Transcription", description="Upload an audio file to transcribe speech into text.", ) # Gradio interface for voice-to-image voice_to_image_iface = gr.Interface( fn=process_audio_and_generate_results, inputs=gr.Audio(type="filepath", label="Upload audio file (WAV/MP3)"), outputs=[gr.Image(label="Generated Image"), gr.Textbox(label="Transcription")], title="Voice-to-Image", description="Upload an audio file to transcribe speech to text and generate an image based on the transcription.", ) # Combined Gradio app iface = gr.TabbedInterface( interface_list=[speech_to_text_iface, voice_to_image_iface], tab_names=["Speech-to-Text", "Voice-to-Image"] ) # Launch Gradio interface iface.launch(debug=True, share=True)