APP / app.py
Sayiqa7's picture
Create app.py
3cda8fc verified
import subprocess
# Install required libraries
subprocess.check_call(["pip", "install", "torch>=1.11.0"])
subprocess.check_call(["pip", "install", "transformers>=4.31.0"])
subprocess.check_call(["pip", "install", "diffusers>=0.14.0"])
subprocess.check_call(["pip", "install", "librosa"])
subprocess.check_call(["pip", "install", "accelerate>=0.20.1"])
subprocess.check_call(["pip", "install", "gradio>=3.35.2"])
subprocess.check_call(["pip", "install", "huggingface_hub"])
import os
import threading
import numpy as np
import librosa
import torch
import gradio as gr
from functools import lru_cache
from transformers import pipeline
from huggingface_hub import login
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
# Ensure required dependencies are installed
def install_missing_packages():
required_packages = {
"librosa": None,
"diffusers": ">=0.14.0",
"gradio": ">=3.35.2",
"huggingface_hub": None,
"accelerate": ">=0.20.1",
"transformers": ">=4.31.0"
}
for package, version in required_packages.items():
try:
__import__(package)
except ImportError:
package_name = f"{package}{version}" if version else package
subprocess.check_call(["pip", "install", package_name])
install_missing_packages()
# Get Hugging Face token for authentication
hf_token = os.getenv("HF_TOKEN")
if hf_token:
login(hf_token)
else:
raise ValueError("HF_TOKEN environment variable not set.")
# Load speech-to-text model (Whisper)
speech_to_text = pipeline(
"automatic-speech-recognition",
model="openai/whisper-tiny",
return_timestamps=True
)
# Load Stable Diffusion model for text-to-image
text_to_image = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
device = "cuda" if torch.cuda.is_available() else "cpu"
text_to_image.to(device)
text_to_image.enable_attention_slicing()
text_to_image.safety_checker = None
text_to_image.scheduler = DPMSolverMultistepScheduler.from_config(text_to_image.scheduler.config)
# Preprocess audio file into NumPy array
def preprocess_audio(audio_path):
try:
audio, sr = librosa.load(audio_path, sr=16000) # Resample to 16kHz
return np.array(audio, dtype=np.float32)
except Exception as e:
return f"Error in preprocessing audio: {str(e)}"
# Speech-to-text function with long-form transcription support
@lru_cache(maxsize=10)
def transcribe_audio(audio_path):
try:
audio_array = preprocess_audio(audio_path)
if isinstance(audio_array, str): # Error message from preprocessing
return audio_array
result = speech_to_text(audio_array)
# Combine text from multiple segments for long-form transcription
transcription = " ".join(segment["text"] for segment in result["chunks"])
return transcription
except Exception as e:
return f"Error in transcription: {str(e)}"
# Text-to-image function
@lru_cache(maxsize=10)
def generate_image_from_text(text):
try:
image = text_to_image(text, height=256, width=256).images[0] # Generate smaller images for speed
return image
except Exception as e:
return f"Error in image generation: {str(e)}"
# Combined processing function
def process_audio_and_generate_results(audio_path):
transcription_result = {"result": None}
image_result = {"result": None}
# Function to run transcription and image generation in parallel
def transcription_thread():
transcription_result["result"] = transcribe_audio(audio_path)
def image_generation_thread():
transcription = transcription_result["result"]
if transcription and "Error" not in transcription:
image_result["result"] = generate_image_from_text(transcription)
# Start both tasks in parallel
t1 = threading.Thread(target=transcription_thread)
t2 = threading.Thread(target=image_generation_thread)
t1.start()
t2.start()
t1.join() # Wait for transcription to finish
t2.join() # Wait for image generation to finish
transcription = transcription_result["result"]
image = image_result["result"]
if "Error" in transcription:
return None, transcription
if isinstance(image, str) and "Error" in image:
return None, image
return image, transcription
# Gradio interface for speech-to-text
speech_to_text_iface = gr.Interface(
fn=transcribe_audio,
inputs=gr.Audio(type="filepath", label="Upload audio file for transcription (WAV/MP3)"),
outputs=gr.Textbox(label="Transcription"),
title="Speech-to-Text Transcription",
description="Upload an audio file to transcribe speech into text.",
)
# Gradio interface for voice-to-image
voice_to_image_iface = gr.Interface(
fn=process_audio_and_generate_results,
inputs=gr.Audio(type="filepath", label="Upload audio file (WAV/MP3)"),
outputs=[gr.Image(label="Generated Image"), gr.Textbox(label="Transcription")],
title="Voice-to-Image",
description="Upload an audio file to transcribe speech to text and generate an image based on the transcription.",
)
# Combined Gradio app
iface = gr.TabbedInterface(
interface_list=[speech_to_text_iface, voice_to_image_iface],
tab_names=["Speech-to-Text", "Voice-to-Image"]
)
# Launch Gradio interface
iface.launch(debug=True, share=True)