from streamlit.delta_generator import DeltaGenerator import streamlit as st from huggingface_hub import HfApi import json import tempfile import logging # get a global var for logger accessor in this module LOG_LEVEL = logging.DEBUG g_logger = logging.getLogger(__name__) g_logger.setLevel(LOG_LEVEL) def push_observations(tab_log:DeltaGenerator=None): """ Push the observations to the Hugging Face dataset Args: tab_log (streamlit.container): The container to log messages to. If not provided, log messages are in any case written to the global logger (TODO: test - didn't push any observation since generating the logger) """ # we get the observation from session state: 1 is the dict 2 is the image. # first, lets do an info display (popup) metadata_str = json.dumps(st.session_state.public_observation) st.toast(f"Uploading observations: {metadata_str}", icon="🦭") tab_log = st.session_state.tab_log if tab_log is not None: tab_log.info(f"Uploading observations: {metadata_str}") # get huggingface api import os token = os.environ.get("HF_TOKEN", None) api = HfApi(token=token) f = tempfile.NamedTemporaryFile(mode="w", suffix=".json", delete=False) f.write(metadata_str) f.close() st.info(f"temp file: {f.name} with metadata written...") path_in_repo= f"metadata/{st.session_state.public_observation['author_email']}/{st.session_state.public_observation['image_md5']}.json" msg = f"fname: {f.name} | path: {path_in_repo}" print(msg) st.warning(msg) # rv = api.upload_file( # path_or_fileobj=f.name, # path_in_repo=path_in_repo, # repo_id="Saving-Willy/temp_dataset", # repo_type="dataset", # ) # print(rv) # msg = f"observation attempted tx to repo happy walrus: {rv}" g_logger.info(msg) st.info(msg)