import streamlit as st import logging # get a global var for logger accessor in this module LOG_LEVEL = logging.DEBUG g_logger = logging.getLogger(__name__) g_logger.setLevel(LOG_LEVEL) import whale_viewer as viewer from hf_push_observations import push_observations from utils.grid_maker import gridder from utils.metadata_handler import metadata2md # need to divide this into two functions, one for the classification and one for the display # it is currently somewhat interleaved, not totally clear how to separate them. # perhaps we have more stages than I realised. # ML started, ML completed, manual review completed, data uploaded # for now, let's implement the division between ML classification, and display+manual review. def cetacean_classify_list(cetacean_classifier): success = False files = st.session_state.files images = st.session_state.images observations = st.session_state.observations #batch_size, row_size, page = gridder(files) #grid = st.columns(row_size) #col = 0 for file in files: key = file.name image = images[key] observation = observations[key].to_dict() # run classifier model on `image`, and persistently store the output out = cetacean_classifier(image) # get top 3 matches st.session_state.whale_prediction1[key] = out['predictions'][0] st.session_state.classify_whale_done[key] = True # TODO 25.01 unclear what this is for; msg = f"[D]2 classify_whale_done: {st.session_state.classify_whale_done[key]}, whale_prediction1: {st.session_state.whale_prediction1[key]}" g_logger.info(msg) observations[key].set_top_predictions(out['predictions'][:]) st.session_state.public_observation[key] = observation # msg = f"[D] full observation after inference: {observation}" g_logger.debug(msg) print(msg) # TODO: add some mech to test if it was successful. success = True st.balloons() return success def cetacean_show_classifications(): st.write("TOP TEXT") st.write("Reviewing the classifications :construction:") files = st.session_state.files images = st.session_state.images observations = st.session_state.observations batch_size, row_size, page = gridder(files) grid = st.columns(row_size) col = 0 for file in files: key = file.name image = images[key] with grid[col]: st.image(image, use_column_width=True) observation = observations[key].to_dict() # fetch the classification results # run classifier model on `image`, and persistently store the output msg = f"[D]2b classify_whale_done ({file}): {st.session_state.classify_whale_done[key]}, whale_prediction1: {st.session_state.whale_prediction1[key]}" g_logger.info(msg) # dropdown for selecting/overriding the species prediction # TODO: the "it's done" flag seems to get reset when we re-load the tab. Not quite right. if not st.session_state.classify_whale_done[key]: #selected_class = st.sidebar.selectbox("Species", viewer.WHALE_CLASSES, # TODO: ask LV why it is in the sidebar, and not in the grid selected_class = st.selectbox("Species", viewer.WHALE_CLASSES, index=None, placeholder="Species not yet identified...", disabled=True, key=f"cldd_{key}") else: pred1 = st.session_state.whale_prediction1[key] # get index of pred1 from WHALE_CLASSES, none if not present print(f"[D] pred1: {pred1}") ix = viewer.WHALE_CLASSES.index(pred1) if pred1 in viewer.WHALE_CLASSES else None selected_class = st.selectbox(f"Species for {file.name}", viewer.WHALE_CLASSES, index=ix) observation['predicted_class'] = selected_class if selected_class != st.session_state.whale_prediction1[key]: observation['class_overriden'] = selected_class st.session_state.public_observation = observation st.button(f"Upload observation for {file.name} to THE INTERNET!", on_click=push_observations) # TODO: the metadata only fills properly if `validate` was clicked. st.markdown(metadata2md()) msg = f"[D] full observation after inference: {observation}" g_logger.debug(msg) print(msg) # TODO: add a link to more info on the model, next to the button. whale_classes = observations[key].top_predictions # render images for the top 3 (that is what the model api returns) n = len(whale_classes) st.markdown(f"Top {n} Predictions for {file.name}") for i in range(n): viewer.display_whale(whale_classes, i) col = (col + 1) % row_size return True def cetacean_classify_and_review(cetacean_classifier): files = st.session_state.files images = st.session_state.images observations = st.session_state.observations batch_size, row_size, page = gridder(files) grid = st.columns(row_size) col = 0 for file in files: image = images[file.name] with grid[col]: st.image(image, use_column_width=True) observation = observations[file.name].to_dict() # run classifier model on `image`, and persistently store the output out = cetacean_classifier(image) # get top 3 matches st.session_state.whale_prediction1 = out['predictions'][0] st.session_state.classify_whale_done = True msg = f"[D]2 classify_whale_done: {st.session_state.classify_whale_done}, whale_prediction1: {st.session_state.whale_prediction1}" g_logger.info(msg) # dropdown for selecting/overriding the species prediction if not st.session_state.classify_whale_done: selected_class = st.sidebar.selectbox("Species", viewer.WHALE_CLASSES, index=None, placeholder="Species not yet identified...", disabled=True) else: pred1 = st.session_state.whale_prediction1 # get index of pred1 from WHALE_CLASSES, none if not present print(f"[D] pred1: {pred1}") ix = viewer.WHALE_CLASSES.index(pred1) if pred1 in viewer.WHALE_CLASSES else None selected_class = st.selectbox(f"Species for {file.name}", viewer.WHALE_CLASSES, index=ix) observation['predicted_class'] = selected_class if selected_class != st.session_state.whale_prediction1: observation['class_overriden'] = selected_class st.session_state.public_observation = observation st.button(f"Upload observation for {file.name} to THE INTERNET!", on_click=push_observations) # TODO: the metadata only fills properly if `validate` was clicked. st.markdown(metadata2md()) msg = f"[D] full observation after inference: {observation}" g_logger.debug(msg) print(msg) # TODO: add a link to more info on the model, next to the button. whale_classes = out['predictions'][:] # render images for the top 3 (that is what the model api returns) st.markdown(f"Top 3 Predictions for {file.name}") for i in range(len(whale_classes)): viewer.display_whale(whale_classes, i) col = (col + 1) % row_size