Spaces:
Sleeping
Sleeping
rmm
commited on
Commit
·
c3cf604
1
Parent(s):
e90cc61
chore: removing duplicate file (right one is in classifier subdir)
Browse files- src/classifier_image.py +0 -70
src/classifier_image.py
DELETED
@@ -1,70 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import logging
|
3 |
-
import os
|
4 |
-
|
5 |
-
# get a global var for logger accessor in this module
|
6 |
-
LOG_LEVEL = logging.DEBUG
|
7 |
-
g_logger = logging.getLogger(__name__)
|
8 |
-
g_logger.setLevel(LOG_LEVEL)
|
9 |
-
|
10 |
-
from grid_maker import gridder
|
11 |
-
import hf_push_observations as sw_push_obs
|
12 |
-
import utils.metadata_handler as meta_handler
|
13 |
-
import whale_viewer as sw_wv
|
14 |
-
|
15 |
-
def cetacean_classify(cetacean_classifier, tab_inference):
|
16 |
-
files = st.session_state.files
|
17 |
-
images = st.session_state.images
|
18 |
-
observations = st.session_state.observations
|
19 |
-
|
20 |
-
batch_size, row_size, page = gridder(files)
|
21 |
-
|
22 |
-
grid = st.columns(row_size)
|
23 |
-
col = 0
|
24 |
-
|
25 |
-
for file in files:
|
26 |
-
image = images[file.name]
|
27 |
-
|
28 |
-
with grid[col]:
|
29 |
-
st.image(image, use_column_width=True)
|
30 |
-
observation = observations[file.name].to_dict()
|
31 |
-
# run classifier model on `image`, and persistently store the output
|
32 |
-
out = cetacean_classifier(image) # get top 3 matches
|
33 |
-
st.session_state.whale_prediction1 = out['predictions'][0]
|
34 |
-
st.session_state.classify_whale_done = True
|
35 |
-
msg = f"[D]2 classify_whale_done: {st.session_state.classify_whale_done}, whale_prediction1: {st.session_state.whale_prediction1}"
|
36 |
-
g_logger.info(msg)
|
37 |
-
|
38 |
-
# dropdown for selecting/overriding the species prediction
|
39 |
-
if not st.session_state.classify_whale_done:
|
40 |
-
selected_class = st.sidebar.selectbox("Species", sw_wv.WHALE_CLASSES,
|
41 |
-
index=None, placeholder="Species not yet identified...",
|
42 |
-
disabled=True)
|
43 |
-
else:
|
44 |
-
pred1 = st.session_state.whale_prediction1
|
45 |
-
# get index of pred1 from WHALE_CLASSES, none if not present
|
46 |
-
print(f"[D] pred1: {pred1}")
|
47 |
-
ix = sw_wv.WHALE_CLASSES.index(pred1) if pred1 in sw_wv.WHALE_CLASSES else None
|
48 |
-
selected_class = tab_inference.selectbox("Species", sw_wv.WHALE_CLASSES, index=ix)
|
49 |
-
|
50 |
-
observation['predicted_class'] = selected_class
|
51 |
-
if selected_class != st.session_state.whale_prediction1:
|
52 |
-
observation['class_overriden'] = selected_class
|
53 |
-
|
54 |
-
st.session_state.public_observation = observation
|
55 |
-
st.button(f"Upload observation for {file.name} to THE INTERNET!", on_click=sw_push_obs.push_observations)
|
56 |
-
# TODO: the metadata only fills properly if `validate` was clicked.
|
57 |
-
st.markdown(meta_handler.metadata2md())
|
58 |
-
|
59 |
-
msg = f"[D] full observation after inference: {observation}"
|
60 |
-
g_logger.debug(msg)
|
61 |
-
print(msg)
|
62 |
-
# TODO: add a link to more info on the model, next to the button.
|
63 |
-
|
64 |
-
whale_classes = out['predictions'][:]
|
65 |
-
# render images for the top 3 (that is what the model api returns)
|
66 |
-
#with tab_inference:
|
67 |
-
st.title(f"Species detected for {file.name}")
|
68 |
-
for i in range(len(whale_classes)):
|
69 |
-
sw_wv.display_whale(whale_classes, i)
|
70 |
-
col = (col + 1) % row_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|