rmm commited on
Commit
b582a0e
·
1 Parent(s): 5c7e462

fix: use cv2 to load image, now compatible with pre-processing model

Browse files

- Note that the streamlit file_uploader directly takes the bytestream,
not a file name, so we have to convert it instead of just using the
cv2 imread. see https://github.com/streamlit/streamlit/issues/888#issuecomment-568578281
- resolves #1

call_models/entry_and_hotdog.py CHANGED
@@ -25,6 +25,8 @@ from transformers import AutoModelForImageClassification
25
 
26
  # setup for the ML model on huggingface (our wrapper)
27
  os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
 
 
28
  # and the dataset of observations (hf dataset in our space)
29
  dataset_id = "Saving-Willy/Happywhale-kaggle"
30
  data_files = "data/train-00000-of-00001.parquet"
@@ -221,7 +223,8 @@ if __name__ == "__main__":
221
  if tab_inference.button("Identify with cetacean classifier"):
222
  #pipe = pipeline("image-classification", model="Saving-Willy/cetacean-classifier", trust_remote_code=True)
223
  cetacean_classifier = AutoModelForImageClassification.from_pretrained("Saving-Willy/cetacean-classifier",
224
- revision='0f9c15e2db4d64e7f622ade518854b488d8d35e6', trust_remote_code=True)
 
225
 
226
  if st.session_state.image is None:
227
  # TODO: cleaner design to disable the button until data input done?
 
25
 
26
  # setup for the ML model on huggingface (our wrapper)
27
  os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
28
+ #classifier_revision = '0f9c15e2db4d64e7f622ade518854b488d8d35e6'
29
+ classifier_revision = 'main' # default/latest version
30
  # and the dataset of observations (hf dataset in our space)
31
  dataset_id = "Saving-Willy/Happywhale-kaggle"
32
  data_files = "data/train-00000-of-00001.parquet"
 
223
  if tab_inference.button("Identify with cetacean classifier"):
224
  #pipe = pipeline("image-classification", model="Saving-Willy/cetacean-classifier", trust_remote_code=True)
225
  cetacean_classifier = AutoModelForImageClassification.from_pretrained("Saving-Willy/cetacean-classifier",
226
+ revision=classifier_revision,
227
+ trust_remote_code=True)
228
 
229
  if st.session_state.image is None:
230
  # TODO: cleaner design to disable the button until data input done?
call_models/input_handling.py CHANGED
@@ -6,6 +6,8 @@ import hashlib
6
  import logging
7
 
8
  import streamlit as st
 
 
9
 
10
  m_logger = logging.getLogger(__name__)
11
  # we can set the log level locally for funcs in this module
@@ -135,7 +137,12 @@ def setup_input(viewcontainer: st.delta_generator.DeltaGenerator=None, _allowed_
135
 
136
  if uploaded_filename is not None:
137
  # Display the uploaded image
138
- image = Image.open(uploaded_filename)
 
 
 
 
 
139
  viewcontainer.image(image, caption='Uploaded Image.', use_column_width=True)
140
  # store the image in the session state
141
  st.session_state.image = image
 
6
  import logging
7
 
8
  import streamlit as st
9
+ import cv2
10
+ import numpy as np
11
 
12
  m_logger = logging.getLogger(__name__)
13
  # we can set the log level locally for funcs in this module
 
137
 
138
  if uploaded_filename is not None:
139
  # Display the uploaded image
140
+ #image = Image.open(uploaded_filename)
141
+ # load image using cv2 format, so it is compatible with the ML models
142
+ file_bytes = np.asarray(bytearray(uploaded_filename.read()), dtype=np.uint8)
143
+ image = cv2.imdecode(file_bytes, 1)
144
+
145
+
146
  viewcontainer.image(image, caption='Uploaded Image.', use_column_width=True)
147
  # store the image in the session state
148
  st.session_state.image = image