Spaces:
Sleeping
Sleeping
feat: hash used as identifier
Browse files- src/classifier/classifier_image.py +10 -10
- src/input/input_handling.py +7 -4
- src/input/input_validator.py +2 -1
- src/main.py +7 -7
- src/utils/grid_maker.py +2 -2
src/classifier/classifier_image.py
CHANGED
@@ -12,21 +12,20 @@ from utils.grid_maker import gridder
|
|
12 |
from utils.metadata_handler import metadata2md
|
13 |
|
14 |
def cetacean_classify(cetacean_classifier):
|
15 |
-
files = st.session_state.files
|
16 |
images = st.session_state.images
|
17 |
observations = st.session_state.observations
|
18 |
-
|
19 |
-
batch_size, row_size, page = gridder(
|
20 |
|
21 |
grid = st.columns(row_size)
|
22 |
col = 0
|
23 |
-
|
24 |
-
for
|
25 |
-
image = images[
|
26 |
|
27 |
with grid[col]:
|
28 |
st.image(image, use_column_width=True)
|
29 |
-
observation = observations[
|
30 |
# run classifier model on `image`, and persistently store the output
|
31 |
out = cetacean_classifier(image) # get top 3 matches
|
32 |
st.session_state.whale_prediction1 = out['predictions'][0]
|
@@ -44,14 +43,14 @@ def cetacean_classify(cetacean_classifier):
|
|
44 |
# get index of pred1 from WHALE_CLASSES, none if not present
|
45 |
print(f"[D] pred1: {pred1}")
|
46 |
ix = viewer.WHALE_CLASSES.index(pred1) if pred1 in viewer.WHALE_CLASSES else None
|
47 |
-
selected_class = st.selectbox(f"Species for {
|
48 |
|
49 |
observation['predicted_class'] = selected_class
|
50 |
if selected_class != st.session_state.whale_prediction1:
|
51 |
observation['class_overriden'] = selected_class
|
52 |
|
53 |
st.session_state.public_observation = observation
|
54 |
-
st.button(f"Upload observation
|
55 |
# TODO: the metadata only fills properly if `validate` was clicked.
|
56 |
st.markdown(metadata2md())
|
57 |
|
@@ -62,7 +61,8 @@ def cetacean_classify(cetacean_classifier):
|
|
62 |
|
63 |
whale_classes = out['predictions'][:]
|
64 |
# render images for the top 3 (that is what the model api returns)
|
65 |
-
st.markdown(f"Top 3 Predictions for {
|
66 |
for i in range(len(whale_classes)):
|
67 |
viewer.display_whale(whale_classes, i)
|
|
|
68 |
col = (col + 1) % row_size
|
|
|
12 |
from utils.metadata_handler import metadata2md
|
13 |
|
14 |
def cetacean_classify(cetacean_classifier):
|
|
|
15 |
images = st.session_state.images
|
16 |
observations = st.session_state.observations
|
17 |
+
hashes = st.session_state.image_hashes
|
18 |
+
batch_size, row_size, page = gridder(hashes)
|
19 |
|
20 |
grid = st.columns(row_size)
|
21 |
col = 0
|
22 |
+
o=1
|
23 |
+
for hash in hashes:
|
24 |
+
image = images[hash]
|
25 |
|
26 |
with grid[col]:
|
27 |
st.image(image, use_column_width=True)
|
28 |
+
observation = observations[hash].to_dict()
|
29 |
# run classifier model on `image`, and persistently store the output
|
30 |
out = cetacean_classifier(image) # get top 3 matches
|
31 |
st.session_state.whale_prediction1 = out['predictions'][0]
|
|
|
43 |
# get index of pred1 from WHALE_CLASSES, none if not present
|
44 |
print(f"[D] pred1: {pred1}")
|
45 |
ix = viewer.WHALE_CLASSES.index(pred1) if pred1 in viewer.WHALE_CLASSES else None
|
46 |
+
selected_class = st.selectbox(f"Species for observation {str(o)}", viewer.WHALE_CLASSES, index=ix)
|
47 |
|
48 |
observation['predicted_class'] = selected_class
|
49 |
if selected_class != st.session_state.whale_prediction1:
|
50 |
observation['class_overriden'] = selected_class
|
51 |
|
52 |
st.session_state.public_observation = observation
|
53 |
+
st.button(f"Upload observation {str(o)} to THE INTERNET!", on_click=push_observations)
|
54 |
# TODO: the metadata only fills properly if `validate` was clicked.
|
55 |
st.markdown(metadata2md())
|
56 |
|
|
|
61 |
|
62 |
whale_classes = out['predictions'][:]
|
63 |
# render images for the top 3 (that is what the model api returns)
|
64 |
+
st.markdown(f"Top 3 Predictions for observation {str(o)}")
|
65 |
for i in range(len(whale_classes)):
|
66 |
viewer.display_whale(whale_classes, i)
|
67 |
+
o += 1
|
68 |
col = (col + 1) % row_size
|
src/input/input_handling.py
CHANGED
@@ -66,6 +66,7 @@ def setup_input(
|
|
66 |
uploaded_files = viewcontainer.file_uploader("Upload an image", type=allowed_image_types, accept_multiple_files=True)
|
67 |
observations = {}
|
68 |
images = {}
|
|
|
69 |
if uploaded_files is not None:
|
70 |
for file in uploaded_files:
|
71 |
|
@@ -108,11 +109,13 @@ def setup_input(
|
|
108 |
observation = InputObservation(image=file, latitude=latitude, longitude=longitude,
|
109 |
author_email=author_email, date=image_datetime, time=None,
|
110 |
date_option=date_option, time_option=time_option)
|
111 |
-
|
112 |
-
|
|
|
|
|
113 |
|
114 |
st.session_state.images = images
|
115 |
st.session_state.files = uploaded_files
|
116 |
-
|
117 |
-
|
118 |
|
|
|
66 |
uploaded_files = viewcontainer.file_uploader("Upload an image", type=allowed_image_types, accept_multiple_files=True)
|
67 |
observations = {}
|
68 |
images = {}
|
69 |
+
image_hashes =[]
|
70 |
if uploaded_files is not None:
|
71 |
for file in uploaded_files:
|
72 |
|
|
|
109 |
observation = InputObservation(image=file, latitude=latitude, longitude=longitude,
|
110 |
author_email=author_email, date=image_datetime, time=None,
|
111 |
date_option=date_option, time_option=time_option)
|
112 |
+
image_hash = observation.to_dict()["image_md5"]
|
113 |
+
observations[image_hash] = observation
|
114 |
+
images[image_hash] = image
|
115 |
+
image_hashes.append(image_hash)
|
116 |
|
117 |
st.session_state.images = images
|
118 |
st.session_state.files = uploaded_files
|
119 |
+
st.session_state.observations = observations
|
120 |
+
st.session_state.image_hashes = image_hashes
|
121 |
|
src/input/input_validator.py
CHANGED
@@ -96,7 +96,8 @@ def decimal_coords(coords:tuple, ref:str) -> Fraction:
|
|
96 |
return decimal_degrees
|
97 |
|
98 |
|
99 |
-
def get_image_latlon(image_file: UploadedFile) -> tuple[float, float] | None:
|
|
|
100 |
"""
|
101 |
Extracts the latitude and longitude from the EXIF metadata of an uploaded image file.
|
102 |
|
|
|
96 |
return decimal_degrees
|
97 |
|
98 |
|
99 |
+
#def get_image_latlon(image_file: UploadedFile) -> tuple[float, float] | None:
|
100 |
+
def get_image_latlon(image_file: UploadedFile) :
|
101 |
"""
|
102 |
Extracts the latitude and longitude from the EXIF metadata of an uploaded image file.
|
103 |
|
src/main.py
CHANGED
@@ -9,6 +9,7 @@ from streamlit_folium import st_folium
|
|
9 |
from transformers import pipeline
|
10 |
from transformers import AutoModelForImageClassification
|
11 |
|
|
|
12 |
from datasets import disable_caching
|
13 |
disable_caching()
|
14 |
|
@@ -44,6 +45,9 @@ st.set_page_config(layout="wide")
|
|
44 |
if "handler" not in st.session_state:
|
45 |
st.session_state['handler'] = setup_logging()
|
46 |
|
|
|
|
|
|
|
47 |
if "observations" not in st.session_state:
|
48 |
st.session_state.observations = {}
|
49 |
|
@@ -100,7 +104,7 @@ def main() -> None:
|
|
100 |
|
101 |
|
102 |
# create a sidebar, and parse all the input (returned as `observations` object)
|
103 |
-
|
104 |
|
105 |
|
106 |
if 0:## WIP
|
@@ -118,7 +122,7 @@ def main() -> None:
|
|
118 |
with tab_map:
|
119 |
# visual structure: a couple of toggles at the top, then the map inlcuding a
|
120 |
# dropdown for tileset selection.
|
121 |
-
|
122 |
tab_map_ui_cols = st.columns(2)
|
123 |
with tab_map_ui_cols[0]:
|
124 |
show_db_points = st.toggle("Show Points from DB", True)
|
@@ -179,12 +183,8 @@ def main() -> None:
|
|
179 |
# Display submitted observation
|
180 |
if st.sidebar.button("Validate"):
|
181 |
# create a dictionary with the submitted observation
|
182 |
-
submitted_data = observations
|
183 |
-
st.session_state.observations = observations
|
184 |
-
|
185 |
tab_log.info(f"{st.session_state.observations}")
|
186 |
-
|
187 |
-
df = pd.DataFrame(submitted_data, index=[0])
|
188 |
with tab_coords:
|
189 |
st.table(df)
|
190 |
|
|
|
9 |
from transformers import pipeline
|
10 |
from transformers import AutoModelForImageClassification
|
11 |
|
12 |
+
from maps.obs_map import add_header_text
|
13 |
from datasets import disable_caching
|
14 |
disable_caching()
|
15 |
|
|
|
45 |
if "handler" not in st.session_state:
|
46 |
st.session_state['handler'] = setup_logging()
|
47 |
|
48 |
+
if "image_hashes" not in st.session_state:
|
49 |
+
st.session_state.image_hashes = []
|
50 |
+
|
51 |
if "observations" not in st.session_state:
|
52 |
st.session_state.observations = {}
|
53 |
|
|
|
104 |
|
105 |
|
106 |
# create a sidebar, and parse all the input (returned as `observations` object)
|
107 |
+
setup_input(viewcontainer=st.sidebar)
|
108 |
|
109 |
|
110 |
if 0:## WIP
|
|
|
122 |
with tab_map:
|
123 |
# visual structure: a couple of toggles at the top, then the map inlcuding a
|
124 |
# dropdown for tileset selection.
|
125 |
+
add_header_text()
|
126 |
tab_map_ui_cols = st.columns(2)
|
127 |
with tab_map_ui_cols[0]:
|
128 |
show_db_points = st.toggle("Show Points from DB", True)
|
|
|
183 |
# Display submitted observation
|
184 |
if st.sidebar.button("Validate"):
|
185 |
# create a dictionary with the submitted observation
|
|
|
|
|
|
|
186 |
tab_log.info(f"{st.session_state.observations}")
|
187 |
+
df = pd.DataFrame(st.session_state.observations, index=[0])
|
|
|
188 |
with tab_coords:
|
189 |
st.table(df)
|
190 |
|
src/utils/grid_maker.py
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
import streamlit as st
|
2 |
import math
|
3 |
|
4 |
-
def gridder(
|
5 |
cols = st.columns(3)
|
6 |
with cols[0]:
|
7 |
batch_size = st.select_slider("Batch size:",range(10,110,10), value=10)
|
8 |
with cols[1]:
|
9 |
row_size = st.select_slider("Row size:", range(1,6), value = 5)
|
10 |
-
num_batches = math.ceil(len(
|
11 |
with cols[2]:
|
12 |
page = st.selectbox("Page", range(1,num_batches+1))
|
13 |
return batch_size, row_size, page
|
|
|
1 |
import streamlit as st
|
2 |
import math
|
3 |
|
4 |
+
def gridder(items):
|
5 |
cols = st.columns(3)
|
6 |
with cols[0]:
|
7 |
batch_size = st.select_slider("Batch size:",range(10,110,10), value=10)
|
8 |
with cols[1]:
|
9 |
row_size = st.select_slider("Row size:", range(1,6), value = 5)
|
10 |
+
num_batches = math.ceil(len(items)/batch_size)
|
11 |
with cols[2]:
|
12 |
page = st.selectbox("Page", range(1,num_batches+1))
|
13 |
return batch_size, row_size, page
|