Spaces:
Running
Running
rmm
commited on
Commit
·
00bdefd
1
Parent(s):
b384db4
feat: implementation of FSM, and invokation for first phases
Browse files- fsm implementation uses the `transitions` package.
- added unique keys to the input forms, so can check when all are filled
- included a basic viz/feedback on the state
- requirements.txt +2 -1
- src/input/input_handling.py +50 -3
- src/main.py +48 -7
- src/utils/workflow_state.py +92 -0
requirements.txt
CHANGED
@@ -10,7 +10,8 @@ streamlit_folium==0.23.1
|
|
10 |
|
11 |
# backend
|
12 |
datasets==3.0.2
|
13 |
-
|
|
|
14 |
|
15 |
# running ML models
|
16 |
|
|
|
10 |
|
11 |
# backend
|
12 |
datasets==3.0.2
|
13 |
+
## FSM
|
14 |
+
transitions==0.9.2
|
15 |
|
16 |
# running ML models
|
17 |
|
src/input/input_handling.py
CHANGED
@@ -30,6 +30,43 @@ spoof_metadata = {
|
|
30 |
"time": None,
|
31 |
}
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
def setup_input(
|
34 |
viewcontainer: DeltaGenerator=None,
|
35 |
_allowed_image_types: list=None, ) -> InputObservation:
|
@@ -66,7 +103,8 @@ def setup_input(
|
|
66 |
uploaded_files = viewcontainer.file_uploader("Upload an image", type=allowed_image_types, accept_multiple_files=True)
|
67 |
observations = {}
|
68 |
images = {}
|
69 |
-
image_hashes =[]
|
|
|
70 |
if uploaded_files is not None:
|
71 |
for file in uploaded_files:
|
72 |
|
@@ -76,6 +114,7 @@ def setup_input(
|
|
76 |
# load image using cv2 format, so it is compatible with the ML models
|
77 |
file_bytes = np.asarray(bytearray(file.read()), dtype=np.uint8)
|
78 |
filename = file.name
|
|
|
79 |
image = cv2.imdecode(file_bytes, 1)
|
80 |
# Extract and display image date-time
|
81 |
image_datetime = None # For storing date-time from image
|
@@ -84,12 +123,18 @@ def setup_input(
|
|
84 |
|
85 |
|
86 |
# 3. Latitude Entry Box
|
87 |
-
latitude = viewcontainer.text_input(
|
|
|
|
|
|
|
88 |
if latitude and not is_valid_number(latitude):
|
89 |
viewcontainer.error("Please enter a valid latitude (numerical only).")
|
90 |
m_logger.error(f"Invalid latitude entered: {latitude}.")
|
91 |
# 4. Longitude Entry Box
|
92 |
-
longitude = viewcontainer.text_input(
|
|
|
|
|
|
|
93 |
if longitude and not is_valid_number(longitude):
|
94 |
viewcontainer.error("Please enter a valid longitude (numerical only).")
|
95 |
m_logger.error(f"Invalid latitude entered: {latitude}.")
|
@@ -118,4 +163,6 @@ def setup_input(
|
|
118 |
st.session_state.files = uploaded_files
|
119 |
st.session_state.observations = observations
|
120 |
st.session_state.image_hashes = image_hashes
|
|
|
|
|
121 |
|
|
|
30 |
"time": None,
|
31 |
}
|
32 |
|
33 |
+
def check_inputs_are_set(empty_ok:bool=False, debug:bool=False) -> bool:
|
34 |
+
"""
|
35 |
+
Checks if all expected inputs have been entered
|
36 |
+
|
37 |
+
Implementation: via the Streamlit session state.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
empty_ok (bool): If True, returns True if no inputs are set. Default is False.
|
41 |
+
debug (bool): If True, prints and logs the status of each expected input key. Default is False.
|
42 |
+
Returns:
|
43 |
+
bool: True if all expected input keys are set, False otherwise.
|
44 |
+
"""
|
45 |
+
filenames = st.session_state.image_filenames
|
46 |
+
if len(filenames) == 0:
|
47 |
+
return empty_ok
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
exp_input_key_stubs = ["input_latitude", "input_longitude"]
|
52 |
+
#exp_input_key_stubs = ["input_latitude", "input_longitude", "input_author_email", "input_date", "input_time", "input_image_selector"]
|
53 |
+
vals = []
|
54 |
+
for image_filename in filenames:
|
55 |
+
for stub in exp_input_key_stubs:
|
56 |
+
key = f"{stub}_{image_filename}"
|
57 |
+
val = None
|
58 |
+
if key in st.session_state:
|
59 |
+
val = st.session_state[key]
|
60 |
+
vals.append(val)
|
61 |
+
if debug:
|
62 |
+
msg = f"{key:15}, {(val is not None):8}, {val}"
|
63 |
+
m_logger.debug(msg)
|
64 |
+
print(msg)
|
65 |
+
|
66 |
+
return all([v is not None for v in vals])
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
def setup_input(
|
71 |
viewcontainer: DeltaGenerator=None,
|
72 |
_allowed_image_types: list=None, ) -> InputObservation:
|
|
|
103 |
uploaded_files = viewcontainer.file_uploader("Upload an image", type=allowed_image_types, accept_multiple_files=True)
|
104 |
observations = {}
|
105 |
images = {}
|
106 |
+
image_hashes = []
|
107 |
+
filenames = []
|
108 |
if uploaded_files is not None:
|
109 |
for file in uploaded_files:
|
110 |
|
|
|
114 |
# load image using cv2 format, so it is compatible with the ML models
|
115 |
file_bytes = np.asarray(bytearray(file.read()), dtype=np.uint8)
|
116 |
filename = file.name
|
117 |
+
filenames.append(filename)
|
118 |
image = cv2.imdecode(file_bytes, 1)
|
119 |
# Extract and display image date-time
|
120 |
image_datetime = None # For storing date-time from image
|
|
|
123 |
|
124 |
|
125 |
# 3. Latitude Entry Box
|
126 |
+
latitude = viewcontainer.text_input(
|
127 |
+
"Latitude for "+filename,
|
128 |
+
spoof_metadata.get('latitude', ""),
|
129 |
+
key=f"input_latitude_{filename}")
|
130 |
if latitude and not is_valid_number(latitude):
|
131 |
viewcontainer.error("Please enter a valid latitude (numerical only).")
|
132 |
m_logger.error(f"Invalid latitude entered: {latitude}.")
|
133 |
# 4. Longitude Entry Box
|
134 |
+
longitude = viewcontainer.text_input(
|
135 |
+
"Longitude for "+filename,
|
136 |
+
spoof_metadata.get('longitude', ""),
|
137 |
+
key=f"input_longitude_{filename}")
|
138 |
if longitude and not is_valid_number(longitude):
|
139 |
viewcontainer.error("Please enter a valid longitude (numerical only).")
|
140 |
m_logger.error(f"Invalid latitude entered: {latitude}.")
|
|
|
163 |
st.session_state.files = uploaded_files
|
164 |
st.session_state.observations = observations
|
165 |
st.session_state.image_hashes = image_hashes
|
166 |
+
st.session_state.image_filenames = filenames
|
167 |
+
|
168 |
|
src/main.py
CHANGED
@@ -15,10 +15,11 @@ disable_caching()
|
|
15 |
|
16 |
import whale_gallery as gallery
|
17 |
import whale_viewer as viewer
|
18 |
-
from input.input_handling import setup_input
|
19 |
from maps.alps_map import present_alps_map
|
20 |
from maps.obs_map import present_obs_map
|
21 |
from utils.st_logs import setup_logging, parse_log_buffer
|
|
|
22 |
from classifier.classifier_image import cetacean_classify
|
23 |
from classifier.classifier_hotdog import hotdog_classify
|
24 |
|
@@ -48,6 +49,11 @@ if "handler" not in st.session_state:
|
|
48 |
if "image_hashes" not in st.session_state:
|
49 |
st.session_state.image_hashes = []
|
50 |
|
|
|
|
|
|
|
|
|
|
|
51 |
if "observations" not in st.session_state:
|
52 |
st.session_state.observations = {}
|
53 |
|
@@ -69,6 +75,23 @@ if "whale_prediction1" not in st.session_state:
|
|
69 |
if "tab_log" not in st.session_state:
|
70 |
st.session_state.tab_log = None
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
def main() -> None:
|
74 |
"""
|
@@ -102,6 +125,10 @@ def main() -> None:
|
|
102 |
st.tabs(["Cetecean classifier", "Hotdog classifier", "Map", "*:gray[Dev:coordinates]*", "Log", "Beautiful cetaceans"])
|
103 |
st.session_state.tab_log = tab_log
|
104 |
|
|
|
|
|
|
|
|
|
105 |
|
106 |
# create a sidebar, and parse all the input (returned as `observations` object)
|
107 |
setup_input(viewcontainer=st.sidebar)
|
@@ -181,14 +208,25 @@ def main() -> None:
|
|
181 |
|
182 |
|
183 |
# Display submitted observation
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
190 |
|
|
|
|
|
|
|
191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
|
194 |
# inside the inference tab, on button press we call the model (on huggingface hub)
|
@@ -240,6 +278,9 @@ def main() -> None:
|
|
240 |
hotdog_classify(pipeline_hot_dog, tab_hotdogs)
|
241 |
|
242 |
|
|
|
|
|
|
|
243 |
|
244 |
if __name__ == "__main__":
|
245 |
main()
|
|
|
15 |
|
16 |
import whale_gallery as gallery
|
17 |
import whale_viewer as viewer
|
18 |
+
from input.input_handling import setup_input, check_inputs_are_set
|
19 |
from maps.alps_map import present_alps_map
|
20 |
from maps.obs_map import present_obs_map
|
21 |
from utils.st_logs import setup_logging, parse_log_buffer
|
22 |
+
from utils.workflow_state import WorkflowFSM, FSM_STATES
|
23 |
from classifier.classifier_image import cetacean_classify
|
24 |
from classifier.classifier_hotdog import hotdog_classify
|
25 |
|
|
|
49 |
if "image_hashes" not in st.session_state:
|
50 |
st.session_state.image_hashes = []
|
51 |
|
52 |
+
# TODO: ideally just use image_hashes, but need a unique key for the ui elements
|
53 |
+
# to track the user input phase; and these are created before the hash is generated.
|
54 |
+
if "image_filenames" not in st.session_state:
|
55 |
+
st.session_state.image_filenames = []
|
56 |
+
|
57 |
if "observations" not in st.session_state:
|
58 |
st.session_state.observations = {}
|
59 |
|
|
|
75 |
if "tab_log" not in st.session_state:
|
76 |
st.session_state.tab_log = None
|
77 |
|
78 |
+
if "workflow_fsm" not in st.session_state:
|
79 |
+
# create and init the state machine
|
80 |
+
st.session_state.workflow_fsm = WorkflowFSM(FSM_STATES)
|
81 |
+
|
82 |
+
# add progress indicator to session_state
|
83 |
+
if "progress" not in st.session_state:
|
84 |
+
with st.sidebar:
|
85 |
+
st.session_state.disp_progress = [st.empty(), st.empty()]
|
86 |
+
|
87 |
+
def refresh_progress():
|
88 |
+
with st.sidebar:
|
89 |
+
tot = st.session_state.workflow_fsm.num_states
|
90 |
+
cur_i = st.session_state.workflow_fsm.current_state_index
|
91 |
+
cur_t = st.session_state.workflow_fsm.current_state
|
92 |
+
st.session_state.disp_progress[0].markdown(f"*Progress: {cur_i}/{tot}. Current: {cur_t}.*")
|
93 |
+
st.session_state.disp_progress[1].progress(cur_i/tot)
|
94 |
+
|
95 |
|
96 |
def main() -> None:
|
97 |
"""
|
|
|
125 |
st.tabs(["Cetecean classifier", "Hotdog classifier", "Map", "*:gray[Dev:coordinates]*", "Log", "Beautiful cetaceans"])
|
126 |
st.session_state.tab_log = tab_log
|
127 |
|
128 |
+
refresh_progress()
|
129 |
+
# add button to sidebar, with the callback to refesh_progress
|
130 |
+
st.sidebar.button("Refresh Progress", on_click=refresh_progress)
|
131 |
+
|
132 |
|
133 |
# create a sidebar, and parse all the input (returned as `observations` object)
|
134 |
setup_input(viewcontainer=st.sidebar)
|
|
|
208 |
|
209 |
|
210 |
# Display submitted observation
|
211 |
+
all_inputs_set = check_inputs_are_set(debug=True)
|
212 |
+
if not all_inputs_set:
|
213 |
+
st.sidebar.button(":gray[*Validate*]", disabled=True, help="Please fill in all fields.")
|
214 |
+
|
215 |
+
else:
|
216 |
+
if st.session_state.workflow_fsm.is_in_state('init'):
|
217 |
+
st.session_state.workflow_fsm.complete_current_state()
|
218 |
|
219 |
+
if st.sidebar.button("**Validate**"):
|
220 |
+
if st.session_state.workflow_fsm.is_in_state('data_entry_complete'):
|
221 |
+
st.session_state.workflow_fsm.complete_current_state()
|
222 |
|
223 |
+
# create a dictionary with the submitted observation
|
224 |
+
tab_log.info(f"{st.session_state.observations}")
|
225 |
+
df = pd.DataFrame(st.session_state.observations, index=[0])
|
226 |
+
with tab_coords:
|
227 |
+
st.table(df)
|
228 |
+
|
229 |
+
|
230 |
|
231 |
|
232 |
# inside the inference tab, on button press we call the model (on huggingface hub)
|
|
|
278 |
hotdog_classify(pipeline_hot_dog, tab_hotdogs)
|
279 |
|
280 |
|
281 |
+
# after all other processing, we can show the stage/state
|
282 |
+
refresh_progress()
|
283 |
+
|
284 |
|
285 |
if __name__ == "__main__":
|
286 |
main()
|
src/utils/workflow_state.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transitions import Machine
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
OKBLUE = '\033[94m'
|
5 |
+
OKGREEN = '\033[92m'
|
6 |
+
OKCYAN = '\033[96m'
|
7 |
+
FAIL = '\033[91m'
|
8 |
+
ENDC = '\033[0m'
|
9 |
+
|
10 |
+
|
11 |
+
FSM_STATES = ['init', 'data_entry_complete', 'data_entry_validated', 'ml_classification_started', 'ml_classification_completed', 'manual_inspection_completed', 'data_uploaded']
|
12 |
+
|
13 |
+
|
14 |
+
class WorkflowFSM:
|
15 |
+
def __init__(self, state_sequence: List[str]):
|
16 |
+
self.state_sequence = state_sequence
|
17 |
+
self.state_dict = {state: i for i, state in enumerate(state_sequence)}
|
18 |
+
|
19 |
+
# Create state machine
|
20 |
+
self.machine = Machine(
|
21 |
+
model=self,
|
22 |
+
states=state_sequence,
|
23 |
+
initial=state_sequence[0],
|
24 |
+
)
|
25 |
+
|
26 |
+
# For each state (except the last), add a completion transition to the next state
|
27 |
+
for i in range(len(state_sequence) - 1):
|
28 |
+
current_state = state_sequence[i]
|
29 |
+
next_state = state_sequence[i + 1]
|
30 |
+
|
31 |
+
self.machine.add_transition(
|
32 |
+
trigger=f'complete_{current_state}',
|
33 |
+
source=current_state,
|
34 |
+
dest=next_state,
|
35 |
+
conditions=[f'is_in_{current_state}']
|
36 |
+
)
|
37 |
+
|
38 |
+
# Dynamically add a condition method for each state
|
39 |
+
setattr(self, f'is_in_{current_state}',
|
40 |
+
lambda s=current_state: self.is_in_state(s))
|
41 |
+
|
42 |
+
# Add callbacks for logging
|
43 |
+
self.machine.before_state_change = self._log_transition
|
44 |
+
self.machine.after_state_change = self._post_transition
|
45 |
+
|
46 |
+
def is_in_state(self, state_name: str) -> bool:
|
47 |
+
"""Check if we're currently in the specified state"""
|
48 |
+
return self.state == state_name
|
49 |
+
|
50 |
+
def complete_current_state(self) -> bool:
|
51 |
+
"""
|
52 |
+
Signal that the current state is complete.
|
53 |
+
Returns True if state transition occurred, False otherwise.
|
54 |
+
"""
|
55 |
+
current_state = self.state
|
56 |
+
trigger_name = f'complete_{current_state}'
|
57 |
+
|
58 |
+
if hasattr(self, trigger_name):
|
59 |
+
try:
|
60 |
+
trigger_func = getattr(self, trigger_name)
|
61 |
+
trigger_func()
|
62 |
+
return True
|
63 |
+
except:
|
64 |
+
return False
|
65 |
+
return False
|
66 |
+
|
67 |
+
@property
|
68 |
+
def current_state(self) -> str:
|
69 |
+
"""Get the current state name"""
|
70 |
+
return self.state
|
71 |
+
|
72 |
+
@property
|
73 |
+
def current_state_index(self) -> int:
|
74 |
+
"""Get the current state index"""
|
75 |
+
return self.state_dict[self.state]
|
76 |
+
|
77 |
+
@property
|
78 |
+
def num_states(self) -> int:
|
79 |
+
return len(self.state_sequence)
|
80 |
+
|
81 |
+
|
82 |
+
def _log_transition(self):
|
83 |
+
# TODO: use logger, not printing.
|
84 |
+
self._cprint(f"[FSM] -> Transitioning from {self.current_state}")
|
85 |
+
|
86 |
+
def _post_transition(self):
|
87 |
+
# TODO: use logger, not printing.
|
88 |
+
self._cprint(f"[FSM] -| Transitioned to {self.current_state}")
|
89 |
+
|
90 |
+
def _cprint(self, msg:str, color:str=OKCYAN):
|
91 |
+
"""Print colored message"""
|
92 |
+
print(f"{color}{msg}{ENDC}")
|