rmm
feat: nearly complete input handling with stable state
fd18838
raw
history blame
16.5 kB
import logging
import os
import pandas as pd
import streamlit as st
import folium
from streamlit_folium import st_folium
from transformers import pipeline
from transformers import AutoModelForImageClassification
from maps.obs_map import add_header_text as add_obs_map_header
from classifier.classifier_image import add_header_text as add_classifier_header
from datasets import disable_caching
disable_caching()
import whale_gallery as gallery
import whale_viewer as viewer
from input.input_handling import setup_input, check_inputs_are_set
from maps.alps_map import present_alps_map
from maps.obs_map import present_obs_map
from utils.st_logs import setup_logging, parse_log_buffer
from utils.workflow_state import WorkflowFSM, FSM_STATES
#from classifier.classifier_image import cetacean_classify
from classifier.classifier_image import cetacean_just_classify, cetacean_show_results_and_review, cetacean_show_results
from classifier.classifier_hotdog import hotdog_classify
# setup for the ML model on huggingface (our wrapper)
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
#classifier_revision = '0f9c15e2db4d64e7f622ade518854b488d8d35e6'
classifier_revision = 'main' # default/latest version
# and the dataset of observations (hf dataset in our space)
dataset_id = "Saving-Willy/temp_dataset"
data_files = "data/train-00000-of-00001.parquet"
USE_BASIC_MAP = False
DEV_SIDEBAR_LIB = True
# get a global var for logger accessor in this module
LOG_LEVEL = logging.DEBUG
g_logger = logging.getLogger(__name__)
g_logger.setLevel(LOG_LEVEL)
st.set_page_config(layout="wide")
# initialise various session state variables
if "handler" not in st.session_state:
st.session_state['handler'] = setup_logging()
if "image_hashes" not in st.session_state:
st.session_state.image_hashes = []
# TODO: ideally just use image_hashes, but need a unique key for the ui elements
# to track the user input phase; and these are created before the hash is generated.
if "image_filenames" not in st.session_state:
st.session_state.image_filenames = []
if "observations" not in st.session_state:
st.session_state.observations = {}
if "images" not in st.session_state:
st.session_state.images = {}
if "files" not in st.session_state:
st.session_state.files = {}
if "public_observation" not in st.session_state:
st.session_state.public_observation = {}
if "classify_whale_done" not in st.session_state:
st.session_state.classify_whale_done = {}
if "whale_prediction1" not in st.session_state:
st.session_state.whale_prediction1 = {}
if "tab_log" not in st.session_state:
st.session_state.tab_log = None
if "workflow_fsm" not in st.session_state:
# create and init the state machine
st.session_state.workflow_fsm = WorkflowFSM(FSM_STATES)
def refresh_progress():
with st.sidebar:
tot = st.session_state.workflow_fsm.num_states - 1
cur_i = st.session_state.workflow_fsm.current_state_index
cur_t = st.session_state.workflow_fsm.current_state
st.session_state.disp_progress[0].markdown(f"*Progress: {cur_i}/{tot}. Current: {cur_t}.*")
st.session_state.disp_progress[1].progress(cur_i/tot)
# add progress indicator to session_state
if "progress" not in st.session_state:
with st.sidebar:
st.session_state.disp_progress = [st.empty(), st.empty()]
# add button to sidebar, with the callback to refesh_progress
st.sidebar.button("Refresh Progress", on_click=refresh_progress)
def dbg_show_obs_hashes():
# a debug: we seem to be losing the whale classes?
st.write(f"[D] num observations: {len(st.session_state.observations)}")
for hash in st.session_state.observations.keys():
st.markdown(f"- [D] observation {hash} has {len(st.session_state.observations[hash].top_predictions)} predictions")
def main() -> None:
"""
Main entry point to set up the streamlit UI and run the application.
The organisation is as follows:
1. observation input (a new observations) is handled in the sidebar
2. the rest of the interface is organised in tabs:
- cetean classifier
- hotdog classifier
- map to present the obersvations
- table of recent log entries
- gallery of whale images
The majority of the tabs are instantiated from modules. Currently the two
classifiers are still in-line here.
"""
g_logger.info("App started.")
g_logger.warning(f"[D] Streamlit version: {st.__version__}. Python version: {os.sys.version}")
#g_logger.debug("debug message")
#g_logger.info("info message")
#g_logger.warning("warning message")
# Streamlit app
tab_inference, tab_hotdogs, tab_map, tab_coords, tab_log, tab_gallery = \
st.tabs(["Cetecean classifier", "Hotdog classifier", "Map", "*:gray[Dev:coordinates]*", "Log", "Beautiful cetaceans"])
st.session_state.tab_log = tab_log
# put this early so the progress indicator is at the top (also refreshed at end)
refresh_progress()
# create a sidebar, and parse all the input (returned as `observations` object)
with st.sidebar:
setup_input(viewcontainer=st.sidebar)
if 0:## WIP
# goal of this code is to allow the user to override the ML prediction, before transmitting an observations
predicted_class = st.sidebar.selectbox("Predicted Class", viewer.WHALE_CLASSES)
override_prediction = st.sidebar.checkbox("Override Prediction")
if override_prediction:
overridden_class = st.sidebar.selectbox("Override Class", viewer.WHALE_CLASSES)
st.session_state.observations['class_overriden'] = overridden_class
else:
st.session_state.observations['class_overriden'] = None
with tab_map:
# visual structure: a couple of toggles at the top, then the map inlcuding a
# dropdown for tileset selection.
add_obs_map_header()
tab_map_ui_cols = st.columns(2)
with tab_map_ui_cols[0]:
show_db_points = st.toggle("Show Points from DB", True)
with tab_map_ui_cols[1]:
dbg_show_extra = st.toggle("Show Extra points (test)", False)
if show_db_points:
# show a nicer map, observations marked, tileset selectable.
st_observation = present_obs_map(
dataset_id=dataset_id, data_files=data_files,
dbg_show_extra=dbg_show_extra)
else:
# development map.
st_observation = present_alps_map()
with tab_log:
handler = st.session_state['handler']
if handler is not None:
records = parse_log_buffer(handler.buffer)
st.dataframe(records[::-1], use_container_width=True,)
st.info(f"Length of records: {len(records)}")
else:
st.error("⚠️ No log handler found!")
with tab_coords:
# the goal of this tab is to allow selection of the new obsvation's location by map click/adjust.
st.markdown("Coming later! :construction:")
st.markdown(
f"""*The goal is to allow interactive definition for the coordinates of a new
observation, by click/drag points on the map.*""")
st.write("Click on the map to capture a location.")
#m = folium.Map(location=visp_loc, zoom_start=7)
mm = folium.Map(location=[39.949610, -75.150282], zoom_start=16)
folium.Marker( [39.949610, -75.150282], popup="Liberty Bell", tooltip="Liberty Bell"
).add_to(mm)
st_data2 = st_folium(mm, width=725)
st.write("below the map...")
if st_data2['last_clicked'] is not None:
print(st_data2)
st.info(st_data2['last_clicked'])
with tab_gallery:
# here we make a container to allow filtering css properties
# specific to the gallery (otherwise we get side effects)
tg_cont = st.container(key="swgallery")
with tg_cont:
gallery.render_whale_gallery(n_cols=4)
# state handling re data_entry phases
# 0. no data entered yet -> display the file uploader thing
# 1. we have some images, but not all the metadata fields are done -> validate button shown, disabled
# 2. all data entered -> validate button enabled
# 3. validation button pressed, validation done -> enable the inference button.
# - at this point do we also want to disable changes to the metadata selectors?
# anyway, simple first.
if st.session_state.workflow_fsm.is_in_state('doing_data_entry'):
# can we advance state? - only when all inputs are set for all uploaded files
all_inputs_set = check_inputs_are_set(debug=True)
if all_inputs_set:
st.session_state.workflow_fsm.complete_current_state()
# -> data_entry_complete
else:
# button, disabled; no state change yet.
st.sidebar.button(":gray[*Validate*]", disabled=True, help="Please fill in all fields.")
if st.session_state.workflow_fsm.is_in_state('data_entry_complete'):
# can we advance state? - only when the validate button is pressed
if st.sidebar.button(":white_check_mark:[**Validate**]"):
# create a dictionary with the submitted observation
tab_log.info(f"{st.session_state.observations}")
df = pd.DataFrame(st.session_state.observations, index=[0])
with tab_coords:
st.table(df)
# there doesn't seem to be any actual validation here?? TODO: find validator function (each element is validated by the input box, but is there something at the whole image level?)
# hmm, maybe it should actually just be "I'm done with data entry"
st.session_state.workflow_fsm.complete_current_state()
# -> data_entry_validated
# state handling re inference phases (tab_inference)
# 3. validation button pressed, validation done -> enable the inference button.
# 4. inference button pressed -> ML started. | let's cut this one out, since it would only
# make sense if we did it as an async action
# 5. ML done -> show results, and manual validation options
# 6. manual validation done -> enable the upload buttons
#
with tab_inference:
dbg_show_obs_hashes()
add_classifier_header()
# if we are before data_entry_validated, show the button, disabled.
if not st.session_state.workflow_fsm.is_in_state_or_beyond('data_entry_validated'):
tab_inference.button(":gray[*Identify with cetacean classifier*]", disabled=True,
help="Please validate inputs before proceeding",
key="button_infer_ceteans")
if st.session_state.workflow_fsm.is_in_state('data_entry_validated'):
# show the button, enabled. If pressed, we start the ML model (And advance state)
if tab_inference.button("Identify with cetacean classifier"):
cetacean_classifier = AutoModelForImageClassification.from_pretrained(
"Saving-Willy/cetacean-classifier",
revision=classifier_revision,
trust_remote_code=True)
cetacean_just_classify(cetacean_classifier)
st.session_state.workflow_fsm.complete_current_state()
# trigger a refresh too (refreshhing the prog indicator means the script reruns and
# we can enter the next state - visualising the results / review)
# ok it doesn't if done programmatically. maybe interacting with teh button? check docs.
refresh_progress()
elif st.session_state.workflow_fsm.is_in_state('ml_classification_completed'):
# show the results, and allow manual validation
s = ""
for k, v in st.session_state.whale_prediction1.items():
s += f"* Image {k}: {v}\n"
st.markdown("""
### Inference Results and manual validation/adjustment
:construction: for now we just show the num images processed.
""")
st.markdown(s)
# add a button to advance the state
if st.button("mock: manual validation done."):
st.session_state.workflow_fsm.complete_current_state()
# -> manual_inspection_completed
cetacean_show_results_and_review()
elif st.session_state.workflow_fsm.is_in_state('manual_inspection_completed'):
# show the ML results, and allow the user to upload the observation
st.markdown("""
### Inference Results (after manual validation)
:construction: for now we just show the button.
""")
if st.button("(nooop) Upload observation to THE INTERNET!"):
st.session_state.workflow_fsm.complete_current_state()
# -> data_uploaded
cetacean_show_results()
elif st.session_state.workflow_fsm.is_in_state('data_uploaded'):
# the data has been sent. Lets show the observations again
# but no buttons to upload (or greyed out ok)
st.markdown("""
### Observation(s) uploaded
:construction: for now we just show the observations.
""")
df = pd.DataFrame(st.session_state.observations, index=[0])
st.table(df)
# didn't decide what the next state is here - I think we are in the terminal state.
#st.session_state.workflow_fsm.complete_current_state()
# inside the inference tab, on button press we call the model (on huggingface hub)
# which will be run locally.
# - the model predicts the top 3 most likely species from the input image
# - these species are shown
# - the user can override the species prediction using the dropdown
# - an observation is uploaded if the user chooses.
# with tab_inference:
# add_classifier_header()
# if tab_inference.button("Identify with cetacean classifier"):
# #pipe = pipeline("image-classification", model="Saving-Willy/cetacean-classifier", trust_remote_code=True)
# cetacean_classifier = AutoModelForImageClassification.from_pretrained("Saving-Willy/cetacean-classifier",
# revision=classifier_revision,
# trust_remote_code=True)
# if st.session_state.images is None:
# # TODO: cleaner design to disable the button until data input done?
# st.info("Please upload an image first.")
# else:
# cetacean_classify(cetacean_classifier)
# inside the hotdog tab, on button press we call a 2nd model (totally unrelated at present, just for demo
# purposes, an hotdog image classifier) which will be run locally.
# - this model predicts if the image is a hotdog or not, and returns probabilities
# - the input image is the same as for the ceteacean classifier - defined in the sidebar
tab_hotdogs.title("Hot Dog? Or Not?")
tab_hotdogs.write("""
*Run alternative classifer on input images. Here we are using
a binary classifier - hotdog or not - from
huggingface.co/julien-c/hotdog-not-hotdog.*""")
if tab_hotdogs.button("Get Hotdog Prediction"):
pipeline_hot_dog = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
if st.session_state.image is None:
st.info("Please upload an image first.")
#st.info(str(observations.to_dict()))
else:
hotdog_classify(pipeline_hot_dog, tab_hotdogs)
# after all other processing, we can show the stage/state
refresh_progress()
if __name__ == "__main__":
main()