saving-willy-dev / src /classifier /classifier_hotdog.py
vancauwe's picture
feat: refactor and multi image classification
0e8c927
raw
history blame
1.02 kB
import streamlit as st
import json
from PIL import Image
def hotdog_classify(pipeline_hot_dog, tab_hotdogs):
col1, col2 = tab_hotdogs.columns(2)
for file in st.session_state.files:
image = st.session_state.images[file.name]
observation = st.session_state.observations[file.name].to_dict()
# display the image (use cached version, no need to reread)
col1.image(image, use_column_width=True)
# and then run inference on the image
hotdog_image = Image.fromarray(image)
predictions = pipeline_hot_dog(hotdog_image)
col2.header("Probabilities")
first = True
for p in predictions:
col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")
if first:
observation['predicted_class'] = p['label']
observation['predicted_score'] = round(p['score'] * 100, 1)
first = False
tab_hotdogs.write(f"Session observation: {json.dumps(observation)}")