Spaces:
Sleeping
Sleeping
import streamlit as st | |
import json | |
from PIL import Image | |
def hotdog_classify(pipeline_hot_dog, tab_hotdogs): | |
col1, col2 = tab_hotdogs.columns(2) | |
for file in st.session_state.files: | |
image = st.session_state.images[file.name] | |
observation = st.session_state.observations[file.name].to_dict() | |
# display the image (use cached version, no need to reread) | |
col1.image(image, use_column_width=True) | |
# and then run inference on the image | |
hotdog_image = Image.fromarray(image) | |
predictions = pipeline_hot_dog(hotdog_image) | |
col2.header("Probabilities") | |
first = True | |
for p in predictions: | |
col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%") | |
if first: | |
observation['predicted_class'] = p['label'] | |
observation['predicted_score'] = round(p['score'] * 100, 1) | |
first = False | |
tab_hotdogs.write(f"Session observation: {json.dumps(observation)}") |