rmm
test: visual test of presented content, persistent to tab switching
fc76ddb
raw
history blame
13.9 kB
import logging
import os
import pandas as pd
import streamlit as st
import folium
from streamlit_folium import st_folium
from transformers import pipeline
from transformers import AutoModelForImageClassification
from maps.obs_map import add_obs_map_header
from classifier.classifier_image import add_classifier_header
from datasets import disable_caching
disable_caching()
import whale_gallery as gallery
import whale_viewer as viewer
from input.input_handling import setup_input, check_inputs_are_set
from input.input_handling import init_input_container_states, add_input_UI_elements, init_input_data_session_states
from input.input_handling import dbg_show_observation_hashes
from maps.alps_map import present_alps_map
from maps.obs_map import present_obs_map
from utils.st_logs import parse_log_buffer, init_logging_session_states
from utils.workflow_ui import refresh_progress_display, init_workflow_viz, init_workflow_session_states
from hf_push_observations import push_all_observations
from classifier.classifier_image import cetacean_just_classify, cetacean_show_results_and_review, cetacean_show_results, init_classifier_session_states
from classifier.classifier_hotdog import hotdog_classify
# setup for the ML model on huggingface (our wrapper)
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
#classifier_revision = '0f9c15e2db4d64e7f622ade518854b488d8d35e6'
classifier_revision = 'main' # default/latest version
# and the dataset of observations (hf dataset in our space)
dataset_id = "Saving-Willy/temp_dataset"
data_files = "data/train-00000-of-00001.parquet"
USE_BASIC_MAP = False
DEV_SIDEBAR_LIB = True
# one toggle for all the extra debug text
if "MODE_DEV_STATEFUL" not in st.session_state:
st.session_state.MODE_DEV_STATEFUL = False
# get a global var for logger accessor in this module
LOG_LEVEL = logging.DEBUG
g_logger = logging.getLogger(__name__)
g_logger.setLevel(LOG_LEVEL)
st.set_page_config(layout="wide")
# initialise various session state variables
init_logging_session_states() # logging init should be early
init_workflow_session_states()
init_input_data_session_states()
init_input_container_states()
init_workflow_viz()
init_classifier_session_states()
def main() -> None:
"""
Main entry point to set up the streamlit UI and run the application.
The organisation is as follows:
1. observation input (a new observations) is handled in the sidebar
2. the rest of the interface is organised in tabs:
- cetean classifier
- hotdog classifier
- map to present the obersvations
- table of recent log entries
- gallery of whale images
The majority of the tabs are instantiated from modules. Currently the two
classifiers are still in-line here.
"""
g_logger.info("App started.")
g_logger.warning(f"[D] Streamlit version: {st.__version__}. Python version: {os.sys.version}")
#g_logger.debug("debug message")
#g_logger.info("info message")
#g_logger.warning("warning message")
# Streamlit app
tab_inference, tab_hotdogs, tab_map, tab_coords, tab_log, tab_gallery = \
st.tabs(["Cetecean classifier", "Hotdog classifier", "Map", "*:gray[Dev:coordinates]*", "Log", "Beautiful cetaceans"])
# put this early so the progress indicator is at the top (also refreshed at end)
refresh_progress_display()
# create a sidebar, and parse all the input (returned as `observations` object)
with st.sidebar:
# layout handling
add_input_UI_elements()
# input elements (file upload, text input, etc)
setup_input()
with tab_map:
# visual structure: a couple of toggles at the top, then the map inlcuding a
# dropdown for tileset selection.
add_obs_map_header()
tab_map_ui_cols = st.columns(2)
with tab_map_ui_cols[0]:
show_db_points = st.toggle("Show Points from DB", True)
with tab_map_ui_cols[1]:
dbg_show_extra = st.toggle("Show Extra points (test)", False)
if show_db_points:
# show a nicer map, observations marked, tileset selectable.
st_observation = present_obs_map(
dataset_id=dataset_id, data_files=data_files,
dbg_show_extra=dbg_show_extra)
else:
# development map.
st_observation = present_alps_map()
with tab_log:
handler = st.session_state['handler']
if handler is not None:
records = parse_log_buffer(handler.buffer)
st.dataframe(records[::-1], use_container_width=True,)
st.info(f"Length of records: {len(records)}")
else:
st.error("⚠️ No log handler found!")
with tab_coords:
# the goal of this tab is to allow selection of the new obsvation's location by map click/adjust.
st.markdown("Coming later! :construction:")
st.markdown(
"""*The goal is to allow interactive definition for the coordinates of a new
observation, by click/drag points on the map.*""")
st.write("Click on the map to capture a location.")
#m = folium.Map(location=visp_loc, zoom_start=7)
mm = folium.Map(location=[39.949610, -75.150282], zoom_start=16)
folium.Marker( [39.949610, -75.150282], popup="Liberty Bell", tooltip="Liberty Bell"
).add_to(mm)
st_data2 = st_folium(mm, width=725)
st.write("below the map...")
if st_data2['last_clicked'] is not None:
print(st_data2)
st.info(st_data2['last_clicked'])
with tab_gallery:
# here we make a container to allow filtering css properties
# specific to the gallery (otherwise we get side effects)
tg_cont = st.container(key="swgallery")
with tg_cont:
gallery.render_whale_gallery(n_cols=4)
# state handling re data_entry phases
# 0. no data entered yet -> display the file uploader thing
# 1. we have some images, but not all the metadata fields are done -> validate button shown, disabled
# 2. all data entered -> validate button enabled
# 3. validation button pressed, validation done -> enable the inference button.
# - at this point do we also want to disable changes to the metadata selectors?
# anyway, simple first.
if st.session_state.workflow_fsm.is_in_state('doing_data_entry'):
# can we advance state? - only when all inputs are set for all uploaded files
all_inputs_set = check_inputs_are_set(debug=True, empty_ok=False)
if all_inputs_set:
st.session_state.workflow_fsm.complete_current_state()
# -> data_entry_complete
else:
# button, disabled; no state change yet.
st.sidebar.button(":gray[*Validate*]", disabled=True, help="Please fill in all fields.")
if st.session_state.workflow_fsm.is_in_state('data_entry_complete'):
# can we advance state? - only when the validate button is pressed
if st.sidebar.button(":white_check_mark:[**Validate**]"):
# create a dictionary with the submitted observation
tab_log.info(f"{st.session_state.observations}")
df = pd.DataFrame([obs.to_dict() for obs in st.session_state.observations.values()])
#df = pd.DataFrame(st.session_state.observations, index=[0])
with tab_coords:
st.table(df)
# there doesn't seem to be any actual validation here?? TODO: find validator function (each element is validated by the input box, but is there something at the whole image level?)
# hmm, maybe it should actually just be "I'm done with data entry"
st.session_state.workflow_fsm.complete_current_state()
# -> data_entry_validated
# state handling re inference phases (tab_inference)
# 3. validation button pressed, validation done -> enable the inference button.
# 4. inference button pressed -> ML started. | let's cut this one out, since it would only
# make sense if we did it as an async action
# 5. ML done -> show results, and manual validation options
# 6. manual validation done -> enable the upload buttons
#
with tab_inference:
# inside the inference tab, on button press we call the model (on huggingface hub)
# which will be run locally.
# - the model predicts the top 3 most likely species from the input image
# - these species are shown
# - the user can override the species prediction using the dropdown
# - an observation is uploaded if the user chooses.
if st.session_state.MODE_DEV_STATEFUL:
dbg_show_observation_hashes()
add_classifier_header()
# if we are before data_entry_validated, show the button, disabled.
if not st.session_state.workflow_fsm.is_in_state_or_beyond('data_entry_validated'):
tab_inference.button(":gray[*Identify with cetacean classifier*]", disabled=True,
help="Please validate inputs before proceeding",
key="button_infer_ceteans")
if st.session_state.workflow_fsm.is_in_state('data_entry_validated'):
# show the button, enabled. If pressed, we start the ML model (And advance state)
if tab_inference.button("Identify with cetacean classifier",
key="button_infer_ceteans"):
cetacean_classifier = AutoModelForImageClassification.from_pretrained(
"Saving-Willy/cetacean-classifier",
revision=classifier_revision,
trust_remote_code=True)
cetacean_just_classify(cetacean_classifier)
st.session_state.workflow_fsm.complete_current_state()
# trigger a refresh too (refreshhing the prog indicator means the script reruns and
# we can enter the next state - visualising the results / review)
# ok it doesn't if done programmatically. maybe interacting with teh button? check docs.
refresh_progress_display()
#TODO: validate this doesn't harm performance adversely.
st.rerun()
elif st.session_state.workflow_fsm.is_in_state('ml_classification_completed'):
# show the results, and allow manual validation
st.markdown("""### Inference results and manual validation/adjustment """)
if st.session_state.MODE_DEV_STATEFUL:
s = ""
for k, v in st.session_state.whale_prediction1.items():
s += f"* Image {k}: {v}\n"
st.markdown(s)
# add a button to advance the state
if st.button("Confirm species predictions", help="Confirm that all species are selected correctly"):
st.session_state.workflow_fsm.complete_current_state()
# -> manual_inspection_completed
st.rerun()
cetacean_show_results_and_review()
elif st.session_state.workflow_fsm.is_in_state('manual_inspection_completed'):
# show the ML results, and allow the user to upload the observation
st.markdown("""### Inference Results (after manual validation) """)
if st.button("Upload all observations to THE INTERNET!"):
# let this go through to the push_all func, since it just reports to log for now.
push_all_observations(enable_push=False)
st.session_state.workflow_fsm.complete_current_state()
# -> data_uploaded
st.rerun()
cetacean_show_results()
elif st.session_state.workflow_fsm.is_in_state('data_uploaded'):
# the data has been sent. Lets show the observations again
# but no buttons to upload (or greyed out ok)
st.markdown("""### Observation(s) uploaded - thank you!""")
cetacean_show_results()
st.divider()
#df = pd.DataFrame(st.session_state.observations, index=[0])
df = pd.DataFrame([obs.to_dict() for obs in st.session_state.observations.values()])
st.table(df)
# didn't decide what the next state is here - I think we are in the terminal state.
#st.session_state.workflow_fsm.complete_current_state()
# inside the hotdog tab, on button press we call a 2nd model (totally unrelated at present, just for demo
# purposes, an hotdog image classifier) which will be run locally.
# - this model predicts if the image is a hotdog or not, and returns probabilities
# - the input image is the same as for the ceteacean classifier - defined in the sidebar
tab_hotdogs.title("Hot Dog? Or Not?")
tab_hotdogs.write("""
*Run alternative classifer on input images. Here we are using
a binary classifier - hotdog or not - from
huggingface.co/julien-c/hotdog-not-hotdog.*""")
if tab_hotdogs.button("Get Hotdog Prediction"):
pipeline_hot_dog = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
if st.session_state.image is None:
st.info("Please upload an image first.")
#st.info(str(observations.to_dict()))
else:
hotdog_classify(pipeline_hot_dog, tab_hotdogs)
# after all other processing, we can show the stage/state
refresh_progress_display()
if __name__ == "__main__":
main()