Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import json | |
| from PIL import Image | |
| def hotdog_classify(pipeline_hot_dog, tab_hotdogs): | |
| col1, col2 = tab_hotdogs.columns(2) | |
| for file in st.session_state.files: | |
| image = st.session_state.images[file.name] | |
| observation = st.session_state.observations[file.name].to_dict() | |
| # display the image (use cached version, no need to reread) | |
| col1.image(image, use_column_width=True) | |
| # and then run inference on the image | |
| hotdog_image = Image.fromarray(image) | |
| predictions = pipeline_hot_dog(hotdog_image) | |
| col2.header("Probabilities") | |
| first = True | |
| for p in predictions: | |
| col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%") | |
| if first: | |
| observation['predicted_class'] = p['label'] | |
| observation['predicted_score'] = round(p['score'] * 100, 1) | |
| first = False | |
| tab_hotdogs.write(f"Session observation: {json.dumps(observation)}") |