Spaces:
Running
Running
File size: 13,821 Bytes
fc4a65c 0a5ba7e fc4a65c 55d18b1 0a5ba7e fc4a65c 5a3cbc4 1d016e8 55d18b1 bd8db44 75fcfd6 774a646 ba6e051 55d18b1 19b7ec2 11550ac 19b7ec2 55d18b1 fc4a65c ec76bb9 fc4a65c a1f9696 fc4a65c 8c4b1f7 fc4a65c fd0073b 19b7ec2 75fcfd6 ba6e051 75fcfd6 19b7ec2 f1504f4 fc4a65c 459af61 55d18b1 459af61 fc4a65c e2d9556 fc4a65c cffe3cc fc4a65c f1504f4 06a0df9 fc4a65c 879acff 895e8d8 ba6e051 cd85869 fc4a65c f1504f4 fc4a65c 55d18b1 fc4a65c 55d18b1 fc4a65c 55d18b1 fc4a65c cffe3cc fc4a65c cffe3cc fc4a65c 55d18b1 fc4a65c f1504f4 9bd26ee f1504f4 bd8db44 f1504f4 f7a48a3 bd8db44 71dfd99 bd8db44 f1504f4 fe42216 895e8d8 8c4b1f7 774a646 895e8d8 f1504f4 f7a48a3 f1504f4 f7a48a3 06a0df9 1bbd515 f1504f4 f7a48a3 f1504f4 8c4b1f7 f1504f4 8c4b1f7 f1504f4 11550ac f7a48a3 f1504f4 f7a48a3 f1504f4 8c4b1f7 f1504f4 8c4b1f7 11550ac 8c4b1f7 f1504f4 8c4b1f7 f7a48a3 f1504f4 f7a48a3 f1504f4 8c4b1f7 71dfd99 f1504f4 fc4a65c cffe3cc fc4a65c cab7270 fc4a65c 55d18b1 fc4a65c 55d18b1 fc4a65c bd8db44 06a0df9 bd8db44 459af61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import logging
import os
import pandas as pd
import streamlit as st
import folium
from streamlit_folium import st_folium
from transformers import pipeline
from transformers import AutoModelForImageClassification
from maps.obs_map import add_obs_map_header
from classifier.classifier_image import add_classifier_header
from datasets import disable_caching
disable_caching()
import whale_gallery as gallery
import whale_viewer as viewer
from input.input_handling import setup_input, check_inputs_are_set
from input.input_handling import init_input_container_states, add_input_UI_elements, init_input_data_session_states
from input.input_handling import dbg_show_observation_hashes
from maps.alps_map import present_alps_map
from maps.obs_map import present_obs_map
from utils.st_logs import parse_log_buffer, init_logging_session_states
from utils.workflow_ui import refresh_progress_display, init_workflow_viz, init_workflow_session_states
from hf_push_observations import push_all_observations
from classifier.classifier_image import cetacean_just_classify, cetacean_show_results_and_review, cetacean_show_results, init_classifier_session_states
from classifier.classifier_hotdog import hotdog_classify
# setup for the ML model on huggingface (our wrapper)
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
#classifier_revision = '0f9c15e2db4d64e7f622ade518854b488d8d35e6'
classifier_revision = 'main' # default/latest version
# and the dataset of observations (hf dataset in our space)
dataset_id = "Saving-Willy/temp_dataset"
data_files = "data/train-00000-of-00001.parquet"
USE_BASIC_MAP = False
DEV_SIDEBAR_LIB = True
# one toggle for all the extra debug text
if "MODE_DEV_STATEFUL" not in st.session_state:
st.session_state.MODE_DEV_STATEFUL = False
# get a global var for logger accessor in this module
LOG_LEVEL = logging.DEBUG
g_logger = logging.getLogger(__name__)
g_logger.setLevel(LOG_LEVEL)
st.set_page_config(layout="wide")
# initialise various session state variables
init_logging_session_states() # logging init should be early
init_workflow_session_states()
init_input_data_session_states()
init_input_container_states()
init_workflow_viz()
init_classifier_session_states()
def main() -> None:
"""
Main entry point to set up the streamlit UI and run the application.
The organisation is as follows:
1. observation input (a new observations) is handled in the sidebar
2. the rest of the interface is organised in tabs:
- cetean classifier
- hotdog classifier
- map to present the obersvations
- table of recent log entries
- gallery of whale images
The majority of the tabs are instantiated from modules. Currently the two
classifiers are still in-line here.
"""
g_logger.info("App started.")
g_logger.warning(f"[D] Streamlit version: {st.__version__}. Python version: {os.sys.version}")
#g_logger.debug("debug message")
#g_logger.info("info message")
#g_logger.warning("warning message")
# Streamlit app
tab_inference, tab_hotdogs, tab_map, tab_coords, tab_log, tab_gallery = \
st.tabs(["Cetecean classifier", "Hotdog classifier", "Map", "*:gray[Dev:coordinates]*", "Log", "Beautiful cetaceans"])
# put this early so the progress indicator is at the top (also refreshed at end)
refresh_progress_display()
# create a sidebar, and parse all the input (returned as `observations` object)
with st.sidebar:
# layout handling
add_input_UI_elements()
# input elements (file upload, text input, etc)
setup_input()
with tab_map:
# visual structure: a couple of toggles at the top, then the map inlcuding a
# dropdown for tileset selection.
add_obs_map_header()
tab_map_ui_cols = st.columns(2)
with tab_map_ui_cols[0]:
show_db_points = st.toggle("Show Points from DB", True)
with tab_map_ui_cols[1]:
dbg_show_extra = st.toggle("Show Extra points (test)", False)
if show_db_points:
# show a nicer map, observations marked, tileset selectable.
st_observation = present_obs_map(
dataset_id=dataset_id, data_files=data_files,
dbg_show_extra=dbg_show_extra)
else:
# development map.
st_observation = present_alps_map()
with tab_log:
handler = st.session_state['handler']
if handler is not None:
records = parse_log_buffer(handler.buffer)
st.dataframe(records[::-1], use_container_width=True,)
st.info(f"Length of records: {len(records)}")
else:
st.error("⚠️ No log handler found!")
with tab_coords:
# the goal of this tab is to allow selection of the new obsvation's location by map click/adjust.
st.markdown("Coming later! :construction:")
st.markdown(
f"""*The goal is to allow interactive definition for the coordinates of a new
observation, by click/drag points on the map.*""")
st.write("Click on the map to capture a location.")
#m = folium.Map(location=visp_loc, zoom_start=7)
mm = folium.Map(location=[39.949610, -75.150282], zoom_start=16)
folium.Marker( [39.949610, -75.150282], popup="Liberty Bell", tooltip="Liberty Bell"
).add_to(mm)
st_data2 = st_folium(mm, width=725)
st.write("below the map...")
if st_data2['last_clicked'] is not None:
print(st_data2)
st.info(st_data2['last_clicked'])
with tab_gallery:
# here we make a container to allow filtering css properties
# specific to the gallery (otherwise we get side effects)
tg_cont = st.container(key="swgallery")
with tg_cont:
gallery.render_whale_gallery(n_cols=4)
# state handling re data_entry phases
# 0. no data entered yet -> display the file uploader thing
# 1. we have some images, but not all the metadata fields are done -> validate button shown, disabled
# 2. all data entered -> validate button enabled
# 3. validation button pressed, validation done -> enable the inference button.
# - at this point do we also want to disable changes to the metadata selectors?
# anyway, simple first.
if st.session_state.workflow_fsm.is_in_state('doing_data_entry'):
# can we advance state? - only when all inputs are set for all uploaded files
all_inputs_set = check_inputs_are_set(debug=True, empty_ok=False)
if all_inputs_set:
st.session_state.workflow_fsm.complete_current_state()
# -> data_entry_complete
else:
# button, disabled; no state change yet.
st.sidebar.button(":gray[*Validate*]", disabled=True, help="Please fill in all fields.")
if st.session_state.workflow_fsm.is_in_state('data_entry_complete'):
# can we advance state? - only when the validate button is pressed
if st.sidebar.button(":white_check_mark:[**Validate**]"):
# create a dictionary with the submitted observation
tab_log.info(f"{st.session_state.observations}")
df = pd.DataFrame([obs.to_dict() for obs in st.session_state.observations.values()])
#df = pd.DataFrame(st.session_state.observations, index=[0])
with tab_coords:
st.table(df)
# there doesn't seem to be any actual validation here?? TODO: find validator function (each element is validated by the input box, but is there something at the whole image level?)
# hmm, maybe it should actually just be "I'm done with data entry"
st.session_state.workflow_fsm.complete_current_state()
# -> data_entry_validated
# state handling re inference phases (tab_inference)
# 3. validation button pressed, validation done -> enable the inference button.
# 4. inference button pressed -> ML started. | let's cut this one out, since it would only
# make sense if we did it as an async action
# 5. ML done -> show results, and manual validation options
# 6. manual validation done -> enable the upload buttons
#
with tab_inference:
# inside the inference tab, on button press we call the model (on huggingface hub)
# which will be run locally.
# - the model predicts the top 3 most likely species from the input image
# - these species are shown
# - the user can override the species prediction using the dropdown
# - an observation is uploaded if the user chooses.
if st.session_state.MODE_DEV_STATEFUL:
dbg_show_observation_hashes()
add_classifier_header()
# if we are before data_entry_validated, show the button, disabled.
if not st.session_state.workflow_fsm.is_in_state_or_beyond('data_entry_validated'):
tab_inference.button(":gray[*Identify with cetacean classifier*]", disabled=True,
help="Please validate inputs before proceeding",
key="button_infer_ceteans")
if st.session_state.workflow_fsm.is_in_state('data_entry_validated'):
# show the button, enabled. If pressed, we start the ML model (And advance state)
if tab_inference.button("Identify with cetacean classifier"):
cetacean_classifier = AutoModelForImageClassification.from_pretrained(
"Saving-Willy/cetacean-classifier",
revision=classifier_revision,
trust_remote_code=True)
cetacean_just_classify(cetacean_classifier)
st.session_state.workflow_fsm.complete_current_state()
# trigger a refresh too (refreshhing the prog indicator means the script reruns and
# we can enter the next state - visualising the results / review)
# ok it doesn't if done programmatically. maybe interacting with teh button? check docs.
refresh_progress_display()
#TODO: validate this doesn't harm performance adversely.
st.rerun()
elif st.session_state.workflow_fsm.is_in_state('ml_classification_completed'):
# show the results, and allow manual validation
st.markdown("""### Inference results and manual validation/adjustment """)
if st.session_state.MODE_DEV_STATEFUL:
s = ""
for k, v in st.session_state.whale_prediction1.items():
s += f"* Image {k}: {v}\n"
st.markdown(s)
# add a button to advance the state
if st.button("Confirm species predictions", help="Confirm that all species are selected correctly"):
st.session_state.workflow_fsm.complete_current_state()
# -> manual_inspection_completed
st.rerun()
cetacean_show_results_and_review()
elif st.session_state.workflow_fsm.is_in_state('manual_inspection_completed'):
# show the ML results, and allow the user to upload the observation
st.markdown("""### Inference Results (after manual validation) """)
if st.button("Upload all observations to THE INTERNET!"):
# let this go through to the push_all func, since it just reports to log for now.
push_all_observations(enable_push=False)
st.session_state.workflow_fsm.complete_current_state()
# -> data_uploaded
st.rerun()
cetacean_show_results()
elif st.session_state.workflow_fsm.is_in_state('data_uploaded'):
# the data has been sent. Lets show the observations again
# but no buttons to upload (or greyed out ok)
st.markdown("""### Observation(s) uploaded - thank you!""")
cetacean_show_results()
st.divider()
#df = pd.DataFrame(st.session_state.observations, index=[0])
df = pd.DataFrame([obs.to_dict() for obs in st.session_state.observations.values()])
st.table(df)
# didn't decide what the next state is here - I think we are in the terminal state.
#st.session_state.workflow_fsm.complete_current_state()
# inside the hotdog tab, on button press we call a 2nd model (totally unrelated at present, just for demo
# purposes, an hotdog image classifier) which will be run locally.
# - this model predicts if the image is a hotdog or not, and returns probabilities
# - the input image is the same as for the ceteacean classifier - defined in the sidebar
tab_hotdogs.title("Hot Dog? Or Not?")
tab_hotdogs.write("""
*Run alternative classifer on input images. Here we are using
a binary classifier - hotdog or not - from
huggingface.co/julien-c/hotdog-not-hotdog.*""")
if tab_hotdogs.button("Get Hotdog Prediction"):
pipeline_hot_dog = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
if st.session_state.image is None:
st.info("Please upload an image first.")
#st.info(str(observations.to_dict()))
else:
hotdog_classify(pipeline_hot_dog, tab_hotdogs)
# after all other processing, we can show the stage/state
refresh_progress_display()
if __name__ == "__main__":
main()
|