Spaces:
Running
Running
File size: 10,953 Bytes
fc4a65c 0a5ba7e fc4a65c 55d18b1 0a5ba7e fc4a65c 5a8836e 1d016e8 55d18b1 bd8db44 55d18b1 bd8db44 55d18b1 fc4a65c ec76bb9 fc4a65c a1f9696 fc4a65c 55d18b1 5a8836e bd8db44 55d18b1 fc4a65c 55d18b1 fc4a65c cc71f8d fc4a65c cc71f8d fc4a65c bd8db44 fc4a65c 459af61 55d18b1 459af61 fc4a65c e2d9556 fc4a65c cffe3cc fc4a65c bd8db44 fc4a65c 879acff 5a8836e fc4a65c 879acff 55d18b1 fc4a65c 55d18b1 fc4a65c 55d18b1 fc4a65c 5a8836e fc4a65c 55d18b1 fc4a65c 55d18b1 fc4a65c 55d18b1 fc4a65c cffe3cc fc4a65c cffe3cc fc4a65c 55d18b1 fc4a65c 55d18b1 bd8db44 fc4a65c bd8db44 fc4a65c bd8db44 fc4a65c 55d18b1 cffe3cc fc4a65c ec76bb9 cffe3cc fc4a65c 55d18b1 fc4a65c fb5f7bb fc4a65c cffe3cc fc4a65c cab7270 fc4a65c 55d18b1 fc4a65c 55d18b1 fc4a65c bd8db44 459af61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import logging
import os
import pandas as pd
import streamlit as st
import folium
from streamlit_folium import st_folium
from transformers import pipeline
from transformers import AutoModelForImageClassification
from maps.obs_map import add_header_text
from datasets import disable_caching
disable_caching()
import whale_gallery as gallery
import whale_viewer as viewer
from input.input_handling import setup_input, check_inputs_are_set
from maps.alps_map import present_alps_map
from maps.obs_map import present_obs_map
from utils.st_logs import setup_logging, parse_log_buffer
from utils.workflow_state import WorkflowFSM, FSM_STATES
from classifier.classifier_image import cetacean_classify
from classifier.classifier_hotdog import hotdog_classify
# setup for the ML model on huggingface (our wrapper)
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
#classifier_revision = '0f9c15e2db4d64e7f622ade518854b488d8d35e6'
classifier_revision = 'main' # default/latest version
# and the dataset of observations (hf dataset in our space)
dataset_id = "Saving-Willy/temp_dataset"
data_files = "data/train-00000-of-00001.parquet"
USE_BASIC_MAP = False
DEV_SIDEBAR_LIB = True
# get a global var for logger accessor in this module
LOG_LEVEL = logging.DEBUG
g_logger = logging.getLogger(__name__)
g_logger.setLevel(LOG_LEVEL)
st.set_page_config(layout="wide")
# initialise various session state variables
if "handler" not in st.session_state:
st.session_state['handler'] = setup_logging()
if "image_hashes" not in st.session_state:
st.session_state.image_hashes = []
# TODO: ideally just use image_hashes, but need a unique key for the ui elements
# to track the user input phase; and these are created before the hash is generated.
if "image_filenames" not in st.session_state:
st.session_state.image_filenames = []
if "observations" not in st.session_state:
st.session_state.observations = {}
if "images" not in st.session_state:
st.session_state.images = {}
if "files" not in st.session_state:
st.session_state.files = {}
if "public_observation" not in st.session_state:
st.session_state.public_observation = {}
if "classify_whale_done" not in st.session_state:
st.session_state.classify_whale_done = {}
if "whale_prediction1" not in st.session_state:
st.session_state.whale_prediction1 = {}
if "tab_log" not in st.session_state:
st.session_state.tab_log = None
if "workflow_fsm" not in st.session_state:
# create and init the state machine
st.session_state.workflow_fsm = WorkflowFSM(FSM_STATES)
# add progress indicator to session_state
if "progress" not in st.session_state:
with st.sidebar:
st.session_state.disp_progress = [st.empty(), st.empty()]
def refresh_progress():
with st.sidebar:
tot = st.session_state.workflow_fsm.num_states
cur_i = st.session_state.workflow_fsm.current_state_index
cur_t = st.session_state.workflow_fsm.current_state
st.session_state.disp_progress[0].markdown(f"*Progress: {cur_i}/{tot}. Current: {cur_t}.*")
st.session_state.disp_progress[1].progress(cur_i/tot)
def main() -> None:
"""
Main entry point to set up the streamlit UI and run the application.
The organisation is as follows:
1. observation input (a new observations) is handled in the sidebar
2. the rest of the interface is organised in tabs:
- cetean classifier
- hotdog classifier
- map to present the obersvations
- table of recent log entries
- gallery of whale images
The majority of the tabs are instantiated from modules. Currently the two
classifiers are still in-line here.
"""
g_logger.info("App started.")
g_logger.warning(f"[D] Streamlit version: {st.__version__}. Python version: {os.sys.version}")
#g_logger.debug("debug message")
#g_logger.info("info message")
#g_logger.warning("warning message")
# Streamlit app
tab_inference, tab_hotdogs, tab_map, tab_coords, tab_log, tab_gallery = \
st.tabs(["Cetecean classifier", "Hotdog classifier", "Map", "*:gray[Dev:coordinates]*", "Log", "Beautiful cetaceans"])
st.session_state.tab_log = tab_log
refresh_progress()
# add button to sidebar, with the callback to refesh_progress
st.sidebar.button("Refresh Progress", on_click=refresh_progress)
# create a sidebar, and parse all the input (returned as `observations` object)
setup_input(viewcontainer=st.sidebar)
if 0:## WIP
# goal of this code is to allow the user to override the ML prediction, before transmitting an observations
predicted_class = st.sidebar.selectbox("Predicted Class", viewer.WHALE_CLASSES)
override_prediction = st.sidebar.checkbox("Override Prediction")
if override_prediction:
overridden_class = st.sidebar.selectbox("Override Class", viewer.WHALE_CLASSES)
st.session_state.observations['class_overriden'] = overridden_class
else:
st.session_state.observations['class_overriden'] = None
with tab_map:
# visual structure: a couple of toggles at the top, then the map inlcuding a
# dropdown for tileset selection.
add_header_text()
tab_map_ui_cols = st.columns(2)
with tab_map_ui_cols[0]:
show_db_points = st.toggle("Show Points from DB", True)
with tab_map_ui_cols[1]:
dbg_show_extra = st.toggle("Show Extra points (test)", False)
if show_db_points:
# show a nicer map, observations marked, tileset selectable.
st_observation = present_obs_map(
dataset_id=dataset_id, data_files=data_files,
dbg_show_extra=dbg_show_extra)
else:
# development map.
st_observation = present_alps_map()
with tab_log:
handler = st.session_state['handler']
if handler is not None:
records = parse_log_buffer(handler.buffer)
st.dataframe(records[::-1], use_container_width=True,)
st.info(f"Length of records: {len(records)}")
else:
st.error("⚠️ No log handler found!")
with tab_coords:
# the goal of this tab is to allow selection of the new obsvation's location by map click/adjust.
st.markdown("Coming later! :construction:")
st.markdown(
f"""*The goal is to allow interactive definition for the coordinates of a new
observation, by click/drag points on the map.*""")
st.write("Click on the map to capture a location.")
#m = folium.Map(location=visp_loc, zoom_start=7)
mm = folium.Map(location=[39.949610, -75.150282], zoom_start=16)
folium.Marker( [39.949610, -75.150282], popup="Liberty Bell", tooltip="Liberty Bell"
).add_to(mm)
st_data2 = st_folium(mm, width=725)
st.write("below the map...")
if st_data2['last_clicked'] is not None:
print(st_data2)
st.info(st_data2['last_clicked'])
with tab_gallery:
# here we make a container to allow filtering css properties
# specific to the gallery (otherwise we get side effects)
tg_cont = st.container(key="swgallery")
with tg_cont:
gallery.render_whale_gallery(n_cols=4)
# Display submitted observation
all_inputs_set = check_inputs_are_set(debug=True)
if not all_inputs_set:
st.sidebar.button(":gray[*Validate*]", disabled=True, help="Please fill in all fields.")
else:
if st.session_state.workflow_fsm.is_in_state('init'):
st.session_state.workflow_fsm.complete_current_state()
if st.sidebar.button("**Validate**"):
if st.session_state.workflow_fsm.is_in_state('data_entry_complete'):
st.session_state.workflow_fsm.complete_current_state()
# create a dictionary with the submitted observation
tab_log.info(f"{st.session_state.observations}")
df = pd.DataFrame(st.session_state.observations, index=[0])
with tab_coords:
st.table(df)
# inside the inference tab, on button press we call the model (on huggingface hub)
# which will be run locally.
# - the model predicts the top 3 most likely species from the input image
# - these species are shown
# - the user can override the species prediction using the dropdown
# - an observation is uploaded if the user chooses.
tab_inference.markdown("""
*Run classifer to identify the species of cetean on the uploaded image.
Once inference is complete, the top three predictions are shown.
You can override the prediction by selecting a species from the dropdown.*""")
if tab_inference.button("Identify with cetacean classifier"):
#pipe = pipeline("image-classification", model="Saving-Willy/cetacean-classifier", trust_remote_code=True)
cetacean_classifier = AutoModelForImageClassification.from_pretrained("Saving-Willy/cetacean-classifier",
revision=classifier_revision,
trust_remote_code=True)
if st.session_state.images is None:
# TODO: cleaner design to disable the button until data input done?
st.info("Please upload an image first.")
else:
cetacean_classify(cetacean_classifier)
# inside the hotdog tab, on button press we call a 2nd model (totally unrelated at present, just for demo
# purposes, an hotdog image classifier) which will be run locally.
# - this model predicts if the image is a hotdog or not, and returns probabilities
# - the input image is the same as for the ceteacean classifier - defined in the sidebar
tab_hotdogs.title("Hot Dog? Or Not?")
tab_hotdogs.write("""
*Run alternative classifer on input images. Here we are using
a binary classifier - hotdog or not - from
huggingface.co/julien-c/hotdog-not-hotdog.*""")
if tab_hotdogs.button("Get Hotdog Prediction"):
pipeline_hot_dog = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
if st.session_state.image is None:
st.info("Please upload an image first.")
#st.info(str(observations.to_dict()))
else:
hotdog_classify(pipeline_hot_dog, tab_hotdogs)
# after all other processing, we can show the stage/state
refresh_progress()
if __name__ == "__main__":
main()
|