File size: 6,888 Bytes
f8bf7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b43dfdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8bf7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b43dfdf
 
 
f8bf7d4
b43dfdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8bf7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from typing import Tuple
import logging

import pandas as pd
from datasets import load_dataset
import streamlit as st
import folium
from streamlit_folium import st_folium

import whale_viewer as sw_wv
from fix_tabrender import js_show_zeroheight_iframe

m_logger = logging.getLogger(__name__)
# we can set the log level locally for funcs in this module
#g_m_logger.setLevel(logging.DEBUG)
m_logger.setLevel(logging.INFO)

# TODO: refactor so we have richer data: a tuple or dict combining
# the dropdown label, the tileset name, the attribution - everything
# needed to make the map logic simplified
tile_sets = [
    'Open Street Map',
    #'Stamen Terrain',
    #'Stamen Toner',
    'Esri Ocean',
    'Esri Images',
    'Stamen Watercolor',
    'CartoDB Positron',
    #'CartoDB Dark_Matter'
]

# a list of unique colours for each whale class (for the map)
_colors = [
    "#FFD700", # Gold
    "#FF5733", # Red
    "#33FF57", # Green
    "#3357FF", # Blue
    "#FFFF33", # Yellow
    "#FF33FF", # Magenta
    "#33FFFF", # Cyan
    "#FF8C00", # Dark Orange
    "#8A2BE2", # Blue Violet
    "#DEB887", # Burlywood
    "#5F9EA0", # Cadet Blue
    "#D2691E", # Chocolate
    "#FF4500", # Orange Red
    "#2E8B57", # Sea Green
    "#DA70D6", # Orchid
    "#FF6347", # Tomato
    "#7FFF00", # Chartreuse
    "#DDA0DD", # Plum
    "#A0522D", # Sienna
    "#4682B4", # Steel Blue
    "#7B68EE", # Medium Slate Blue
    "#F0E68C", # Khaki
    "#B22222", # Firebrick
    "#FF1493", # Deep Pink
    "#FFFACD", # Lemon Chiffon
    "#20B2AA", # Light Sea Green
    "#778899" # Light Slate Gray
]

whale2color = {k: v for k, v in zip(sw_wv.WHALE_CLASSES, _colors)}

def create_map(tile_name:str, location:Tuple[float], zoom_start: int = 7) -> folium.Map:
    """
    Create a folium map with the specified tile layer

    Parameters:
        tile_name (str): The name of the tile layer to use. Options include:
                        'Open Street Map', 'Esri Ocean', 'Esri Images', 
                        'Stamen Toner', 'Stamen Watercolor', 
                        'CartoDB Positron', 'CartoDB Dark_Matter'.
        location (Tuple): Coordinates (lat, lon) of the map center, as floats.
        zoom_start (int, optional): The initial zoom level for the map. Default is 7.

    Returns:
        folium.Map: A folium Map object with the specified settings.
    """
    # https://xyzservices.readthedocs.io/en/stable/gallery.html 
    # get teh attribtuions from here once we pick the 2-3-4 options 
    # make esri ocean the default
    m = folium.Map(location=location, zoom_start=zoom_start,
                   tiles='Esri.OceanBasemap', attr="Esri")
    #m = folium.Map(location=location, zoom_start=zoom_start)

    attr = ""
    if tile_name == 'Open Street Map':
        folium.TileLayer('openstreetmap').add_to(m)
        pass

    #Esri.OceanBasemap
    elif tile_name == 'Esri Ocean':
        pass # made this one default ()
        #attr = "Esri"
        #folium.TileLayer('Esri.OceanBasemap', attr=attr).add_to(m)

    elif tile_name == 'Esri Images':
        attr = "Esri — Source: Esri, i-cubed, USDA"
        #folium.TileLayer('stamenterrain', attr=attr).add_to(m)
        folium.TileLayer('Esri.WorldImagery', attr=attr).add_to(m)
    elif tile_name == 'Stamen Toner':
        attr = "Stamen"
        folium.TileLayer('stamentoner', attr=attr).add_to(m)
    elif tile_name == 'Stamen Watercolor':
        attr = "Stamen"
        folium.TileLayer('Stadia.StamenWatercolor', attr=attr).add_to(m)
    elif tile_name == 'CartoDB Positron':
        folium.TileLayer('cartodb positron').add_to(m)
    elif tile_name == 'CartoDB Dark_Matter':
        folium.TileLayer('cartodb dark_matter').add_to(m)

    #folium.LayerControl().add_to(m)
    return m



def present_obs_map(dataset_id:str = "Saving-Willy/Happywhale-kaggle",
                    data_files:str = "data/train-00000-of-00001.parquet", 
                    dbg_show_extra:bool = False) -> dict:
    """
    Render map plus tile selector, with markers for whale observations
    

    This function loads whale observation data from a specified dataset and
    file, creates a pandas DataFrame compliant with Folium/Streamlit maps, and
    renders an interactive map with markers for each observation.  The map
    allows users to select a tileset, and displays markers with species-specific
    colors.

    Args:
        dataset_id (str): The ID of the dataset to load from Hugging Face. Default is "Saving-Willy/Happywhale-kaggle".
        data_files (str): The path to the data file to load. Default is "data/train-00000-of-00001.parquet".
        dbg_show_extra (bool): If True, add a few extra sample markers for visualization. Default is False.

    Returns:
        dict: Selected data from the Folium/leaflet.js interactions in the browser.

    """

    # load/download data from huggingface dataset
    metadata = load_dataset(dataset_id, data_files=data_files)
    
    # make a pandas df that is compliant with folium/streamlit maps
    _df = pd.DataFrame({
        'lat': metadata["train"]["latitude"],
        'lon': metadata["train"]["longitude"],
        'species': metadata["train"]["predicted_class"],}
    )
    if dbg_show_extra:
        # add a few samples to visualise colours 
        _df.loc[len(_df)] = {'lat': 0, 'lon': 0, 'species': 'rough_toothed_dolphin'}
        _df.loc[len(_df)] = {'lat': -3, 'lon': 0, 'species': 'pygmy_killer_whale'}
        _df.loc[len(_df)] = {'lat': 45.7, 'lon': -2.6, 'species': 'humpback_whale'}

    ocean_loc = 0, 10
    selected_tile = st.selectbox("Choose a tile set", tile_sets, index=None, placeholder="Choose a tile set...", disabled=False)
    map_ = create_map(selected_tile, ocean_loc, zoom_start=2)

    folium.Marker(
        location=ocean_loc,
        popup="Atlantis",
        tooltip="Atlantis",
        icon=folium.Icon(color='blue', icon='info-sign')
    ).add_to(map_)
    
    for _, row in _df.iterrows():
        c = whale2color.get(row['species'], 'red')
        msg = f"[D] color for {row['species']} is {c}"
        m_logger.debug(msg) # depends on m_logger logging level (*not* the main st app's logger)
        #m_logger.info(msg)
        
        kw = {"prefix": "fa", "color": 'gray', "icon_color": c, "icon": "binoculars" } 
        folium.Marker(
            location=[row['lat'], row['lon']],
            popup=f"{row['species']} ",
            tooltip=row['species'],
            icon=folium.Icon(**kw)
        ).add_to(map_)
        #st.info(f"Added marker for {row['name']} {row['lat']} {row['lon']}")

    st_data = st_folium(map_, width=725)

    # workaround for correctly showing js components in tabs
    js_show_zeroheight_iframe(
        component_iframe_title="streamlit_folium.st_folium",
        height=800,
    )
    # this is just debug info -- 
    #st.info("[D]" + str(metadata.column_names))

    return st_data