File size: 9,132 Bytes
fc4a65c
0a5ba7e
 
fc4a65c
 
 
 
55d18b1
0a5ba7e
 
fc4a65c
5a8836e
1d016e8
 
 
55d18b1
 
 
 
 
 
 
 
fc4a65c
 
 
 
ec76bb9
 
fc4a65c
a1f9696
fc4a65c
 
 
 
 
 
 
 
 
 
 
 
 
 
55d18b1
 
5a8836e
 
 
55d18b1
 
 
 
 
fc4a65c
55d18b1
 
 
 
 
fc4a65c
 
 
 
 
 
 
 
 
 
 
459af61
 
 
 
 
 
55d18b1
459af61
 
 
 
 
 
 
 
 
 
 
 
fc4a65c
 
e2d9556
fc4a65c
 
 
 
 
 
cffe3cc
 
fc4a65c
 
 
879acff
5a8836e
fc4a65c
 
 
879acff
55d18b1
fc4a65c
 
 
55d18b1
 
fc4a65c
55d18b1
fc4a65c
 
 
 
 
5a8836e
fc4a65c
 
 
 
 
 
 
 
55d18b1
fc4a65c
 
 
 
 
55d18b1
fc4a65c
 
 
 
 
55d18b1
fc4a65c
 
 
 
 
 
 
cffe3cc
fc4a65c
cffe3cc
 
 
 
 
fc4a65c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55d18b1
fc4a65c
 
55d18b1
fc4a65c
55d18b1
 
5a8836e
cffe3cc
fc4a65c
 
 
 
 
 
 
 
 
 
55d18b1
cffe3cc
 
 
 
fc4a65c
 
 
 
ec76bb9
 
cffe3cc
fc4a65c
55d18b1
fc4a65c
 
 
fb5f7bb
fc4a65c
 
 
 
 
 
 
 
cffe3cc
 
 
 
 
fc4a65c
 
 
cab7270
fc4a65c
 
 
55d18b1
fc4a65c
 
55d18b1
fc4a65c
 
459af61
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import logging
import os

import pandas as pd
import streamlit as st
import folium
from streamlit_folium import st_folium

from transformers import pipeline
from transformers import AutoModelForImageClassification

from maps.obs_map import add_header_text
from datasets import disable_caching
disable_caching()

import whale_gallery as gallery
import whale_viewer as viewer
from input.input_handling import setup_input
from maps.alps_map import present_alps_map
from maps.obs_map import present_obs_map
from utils.st_logs import setup_logging, parse_log_buffer
from classifier.classifier_image import cetacean_classify
from classifier.classifier_hotdog import hotdog_classify


# setup for the ML model on huggingface (our wrapper)
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
#classifier_revision = '0f9c15e2db4d64e7f622ade518854b488d8d35e6'
classifier_revision = 'main' # default/latest version
# and the dataset of observations (hf dataset in our space)
dataset_id = "Saving-Willy/temp_dataset"
data_files = "data/train-00000-of-00001.parquet"

USE_BASIC_MAP = False
DEV_SIDEBAR_LIB = True

# get a global var for logger accessor in this module
LOG_LEVEL = logging.DEBUG
g_logger = logging.getLogger(__name__)
g_logger.setLevel(LOG_LEVEL)

st.set_page_config(layout="wide")

# initialise various session state variables
if "handler" not in st.session_state:
    st.session_state['handler'] = setup_logging()

if "image_hashes" not in st.session_state:
    st.session_state.image_hashes = []

if "observations" not in st.session_state:
    st.session_state.observations = {}

if "images" not in st.session_state:
    st.session_state.images = {}

if "files" not in st.session_state:
    st.session_state.files = {}

if "public_observation" not in st.session_state:
    st.session_state.public_observation = {}

if "classify_whale_done" not in st.session_state:
    st.session_state.classify_whale_done = False

if "whale_prediction1" not in st.session_state:
    st.session_state.whale_prediction1 = None

if "tab_log" not in st.session_state:
    st.session_state.tab_log = None
    

def main() -> None:
    """
    Main entry point to set up the streamlit UI and run the application.

    The organisation is as follows:

    1. observation input (a new observations) is handled in the sidebar
    2. the rest of the interface is organised in tabs:
    
        - cetean classifier
        - hotdog classifier
        - map to present the obersvations
        - table of recent log entries
        - gallery of whale images
    
    The majority of the tabs are instantiated from modules. Currently the two 
    classifiers are still in-line here.
    
    """

    g_logger.info("App started.")
    g_logger.warning(f"[D] Streamlit version: {st.__version__}. Python version: {os.sys.version}")

    #g_logger.debug("debug message")
    #g_logger.info("info message")
    #g_logger.warning("warning message")

    # Streamlit app
    tab_inference, tab_hotdogs, tab_map, tab_coords, tab_log, tab_gallery = \
        st.tabs(["Cetecean classifier", "Hotdog classifier", "Map", "*:gray[Dev:coordinates]*", "Log", "Beautiful cetaceans"])
    st.session_state.tab_log = tab_log


    # create a sidebar, and parse all the input (returned as `observations` object)
    setup_input(viewcontainer=st.sidebar)

        
    if 0:## WIP
        # goal of this code is to allow the user to override the ML prediction, before transmitting an observations
        predicted_class = st.sidebar.selectbox("Predicted Class", viewer.WHALE_CLASSES)
        override_prediction = st.sidebar.checkbox("Override Prediction")

        if override_prediction:
            overridden_class = st.sidebar.selectbox("Override Class", viewer.WHALE_CLASSES)
            st.session_state.observations['class_overriden'] = overridden_class
        else:
            st.session_state.observations['class_overriden'] = None


    with tab_map:
        # visual structure: a couple of toggles at the top, then the map inlcuding a
        # dropdown for tileset selection.
        add_header_text()
        tab_map_ui_cols = st.columns(2)
        with tab_map_ui_cols[0]:
            show_db_points = st.toggle("Show Points from DB", True)
        with tab_map_ui_cols[1]:
            dbg_show_extra = st.toggle("Show Extra points (test)", False)
            
        if show_db_points:
            # show a nicer map, observations marked, tileset selectable.
            st_observation = present_obs_map(
                dataset_id=dataset_id, data_files=data_files,
                dbg_show_extra=dbg_show_extra)
            
        else:
            # development map.
            st_observation = present_alps_map()
            

    with tab_log:
        handler = st.session_state['handler']
        if handler is not None:
            records = parse_log_buffer(handler.buffer)
            st.dataframe(records[::-1], use_container_width=True,)
            st.info(f"Length of records: {len(records)}")
        else:
            st.error("⚠️ No log handler found!")

        
        
    with tab_coords:
        # the goal of this tab is to allow selection of the new obsvation's location by map click/adjust.
        st.markdown("Coming later! :construction:")
        st.markdown(
            f"""*The goal is to allow interactive definition for the coordinates of a new
            observation, by click/drag points on the map.*""")
        

        st.write("Click on the map to capture a location.")
        #m = folium.Map(location=visp_loc, zoom_start=7)
        mm = folium.Map(location=[39.949610, -75.150282], zoom_start=16)
        folium.Marker( [39.949610, -75.150282], popup="Liberty Bell", tooltip="Liberty Bell"
    ).add_to(mm)

        st_data2 = st_folium(mm, width=725)
        st.write("below the map...")
        if st_data2['last_clicked'] is not None:
            print(st_data2)
            st.info(st_data2['last_clicked'])


    with tab_gallery:
        # here we make a container to allow filtering css properties 
        # specific to the gallery (otherwise we get side effects)
        tg_cont = st.container(key="swgallery")
        with tg_cont:
            gallery.render_whale_gallery(n_cols=4)
        

    # Display submitted observation
    if st.sidebar.button("Validate"):
        # create a dictionary with the submitted observation
        tab_log.info(f"{st.session_state.observations}")
        df = pd.DataFrame(st.session_state.observations, index=[0])
        with tab_coords:
            st.table(df)
        
        

        
    # inside the inference tab, on button press we call the model (on huggingface hub)
    # which will be run locally. 
    # - the model predicts the top 3 most likely species from the input image
    # - these species are shown
    # - the user can override the species prediction using the dropdown 
    # - an observation is uploaded if the user chooses.
    tab_inference.markdown("""
                *Run classifer to identify the species of cetean on the uploaded image.
                Once inference is complete, the top three predictions are shown.
                You can override the prediction by selecting a species from the dropdown.*""")
        
    if tab_inference.button("Identify with cetacean classifier"):
        #pipe = pipeline("image-classification", model="Saving-Willy/cetacean-classifier", trust_remote_code=True)
        cetacean_classifier = AutoModelForImageClassification.from_pretrained("Saving-Willy/cetacean-classifier", 
                                                                            revision=classifier_revision,
                                                                            trust_remote_code=True)

        
        if st.session_state.images is None:
            # TODO: cleaner design to disable the button until data input done?
            st.info("Please upload an image first.")
        else:
            cetacean_classify(cetacean_classifier)
                
        

        
    # inside the hotdog tab, on button press we call a 2nd model (totally unrelated at present, just for demo
    # purposes, an hotdog image classifier) which will be run locally.
    # - this model predicts if the image is a hotdog or not, and returns probabilities
    # - the input image is the same as for the ceteacean classifier - defined in the sidebar
    tab_hotdogs.title("Hot Dog? Or Not?")
    tab_hotdogs.write("""
                *Run alternative classifer on input images. Here we are using
                a binary classifier - hotdog or not - from
                huggingface.co/julien-c/hotdog-not-hotdog.*""")

    if tab_hotdogs.button("Get Hotdog Prediction"):   
        
        pipeline_hot_dog = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")

        if st.session_state.image is None:
            st.info("Please upload an image first.")
            #st.info(str(observations.to_dict()))
            
        else:
            hotdog_classify(pipeline_hot_dog, tab_hotdogs)
            
            

if __name__ == "__main__":
    main()