File size: 10,310 Bytes
0e8c927
 
 
beca8fa
 
 
 
 
0e8c927
 
 
 
 
 
d437f49
0e8c927
 
 
 
 
 
 
beca8fa
 
1ba3d0b
 
 
 
d437f49
 
fb505f3
 
0e8c927
 
 
 
 
 
 
 
 
 
d437f49
 
0e8c927
 
 
 
 
 
 
fd18838
 
 
d437f49
 
beca8fa
1ba3d0b
 
d437f49
 
0e8c927
 
 
 
beca8fa
1ba3d0b
 
d437f49
fb505f3
c915f7c
f824145
c915f7c
 
f824145
fd18838
 
fb505f3
beca8fa
 
 
 
fb505f3
fd18838
f824145
 
c915f7c
 
f824145
c915f7c
 
 
 
 
 
 
 
 
f824145
 
 
c915f7c
 
 
 
 
 
 
 
 
f824145
fd18838
 
fb505f3
 
d437f49
5823912
0e8c927
 
fb505f3
 
 
1ba3d0b
 
fb505f3
0e8c927
 
fb505f3
 
 
 
 
 
 
beca8fa
1ba3d0b
 
d437f49
fb505f3
 
 
0e8c927
 
fb505f3
 
d6d4e4e
 
 
 
 
 
 
 
 
fb505f3
 
beca8fa
1ba3d0b
 
beca8fa
d437f49
d6d4e4e
fb505f3
d6d4e4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beca8fa
 
1ba3d0b
 
 
 
d437f49
d6d4e4e
 
 
fb505f3
d6d4e4e
 
 
 
 
 
0e8c927
 
 
 
 
 
 
d437f49
fb505f3
d437f49
0e8c927
 
 
beca8fa
1ba3d0b
 
c915f7c
 
 
 
1ba3d0b
0e8c927
 
 
 
fb505f3
 
 
 
 
beca8fa
1ba3d0b
 
d437f49
fb505f3
 
0e8c927
 
 
fb505f3
 
 
 
 
beca8fa
1ba3d0b
 
d437f49
fb505f3
 
0e8c927
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import hashlib
from input.input_validator import generate_random_md5

from numpy import ndarray
from streamlit.runtime.uploaded_file_manager import UploadedFile
import datetime


# autogenerated class to hold the input data
class InputObservation:
    """
    A class to hold an input observation and associated metadata

    Attributes:
        image (ndarray): 
            The image associated with the observation.
        latitude (float): 
            The latitude where the observation was made.
        longitude (float): 
            The longitude where the observation was made.
        author_email (str): 
            The email of the author of the observation.
        image_datetime_raw (str):  
            The datetime extracted from the observation file 
        date (datetime.date): 
            Date of the observation
        time (datetime.time): 
            Time of the observation
        uploaded_file (UploadedFile): 
            The uploaded file associated with the observation.
        image_md5 (str):
            The MD5 hash of the image associated with the observation.

    Methods:
        __str__():
            Returns a string representation of the observation.
        __repr__():
            Returns a string representation of the observation.
        __eq__(other):
            Checks if two observations are equal.
        __ne__(other):
            Checks if two observations are not equal.
        show_diff(other):
            Shows the differences between two observations.
        to_dict():
            Converts the observation to a dictionary.
        from_dict(data):
            Creates an observation from a dictionary.
        from_input(input):
            Creates an observation from another input observation.
    """

    _inst_count = 0 
    
    def __init__(
        self, image:ndarray=None, latitude:float=None, longitude:float=None, 
        author_email:str=None, image_datetime_raw:str=None, 
        date:datetime.date=None, 
        time:datetime.time=None, 
        uploaded_file:UploadedFile=None, image_md5:str=None):

        self.image = image
        self.latitude = latitude
        self.longitude = longitude
        self.author_email = author_email
        self.image_datetime_raw = image_datetime_raw
        self.date = date
        self.time = time
        self.uploaded_file = uploaded_file
        self.image_md5 = image_md5
        # attributes that get set after predictions/processing
        self._top_predictions = []
        self._selected_class = None
        self._class_overriden = False

        InputObservation._inst_count += 1
        self._inst_id = InputObservation._inst_count


        #dbg - temporarily give up if hash is not provided
        if self.image_md5 is None:
            raise ValueError(f"Image MD5 hash is required - {self._inst_id:3}.")


    def set_top_predictions(self, top_predictions:list):
        self._top_predictions = top_predictions
        if len(top_predictions) > 0:
            self.set_selected_class(top_predictions[0])
    
    def set_selected_class(self, selected_class:str):
        self._selected_class = selected_class
        if selected_class != self._top_predictions[0]:
            self.set_class_overriden(True)
        
    def set_class_overriden(self, class_overriden:bool):
        self._class_overriden = class_overriden
        
    # add getters for the top_predictions, selected_class and class_overriden
    @property
    def top_predictions(self):
        return self._top_predictions

    @property
    def selected_class(self):
        return self._selected_class
    
    @property
    def class_overriden(self):
        return self._class_overriden
    
    
    # add a method to assign the image_md5 only once
    def assign_image_md5(self):
        raise DeprecationWarning("This method is deprecated. hash is a required constructor argument.")
        if not self.image_md5:
            self.image_md5 = hashlib.md5(self.uploaded_file.read()).hexdigest() if self.uploaded_file else generate_random_md5()
            m_logger.debug(f"[D] Assigned image md5: {self.image_md5} for {self.uploaded_file}")

    def __str__(self):
        _im_str = "None" if self.image is None else f"image dims: {self.image.shape}"
        return (
            f"Observation: {_im_str}, {self.latitude}, {self.longitude}, "
            f"{self.author_email}, {self.image_datetime_raw}, {self.date}, " 
            f"{self.time}, {self.uploaded_file}, {self.image_md5}"
        )

    def __repr__(self):
        _im_str = "None" if self.image is None else f"image dims: {self.image.shape}"
        return (
            f"Observation: "
            f"Image: {_im_str}, "
            f"Latitude: {self.latitude}, "
            f"Longitude: {self.longitude}, "
            f"Author Email: {self.author_email}, "
            f"raw timestamp: {self.image_datetime_raw}, "
            f"Date: {self.date}, "
            f"Time: {self.time}, "
            f"Uploaded Filename: {self.uploaded_file}"
            f"Image MD5 hash: {self.image_md5}"
        )


    def __eq__(self, other):
        # TODO: ensure this covers all the attributes (some have been added?)
        # - except inst_id which is unique
        _image_equality = False
        if self.image is None or other.image is None:
            _image_equality = other.image == self.image
        else: # maybe strong assumption: both are correctly ndarray.. should I test types intead?
            _image_equality = (self.image == other.image).all()
        equality = (
            #self.image == other.image and 
            _image_equality and
            self.latitude == other.latitude and 
            self.longitude == other.longitude and 
            self.author_email == other.author_email and
            self.image_datetime_raw == other.image_datetime_raw and
            self.date == other.date and
            # temporarily skip time, it is followed by the clock and that is always differnt 
            #self.time == other.time and 
            self.uploaded_file == other.uploaded_file and 
            self.image_md5 == other.image_md5
            )
        return equality
    
    # define a function show_diff(other) that shows the differences between two observations
    # only highlight the differences, if element is the same don't show it
    # have a summary at the top that shows if the observations are the same or not

    def show_diff(self, other):
        """Show the differences between two observations"""
        differences = []
        if self.image is None or other.image is None:
            if other.image != self.image:
                differences.append(f"   Image is different. (types mismatch: {type(self.image)} vs {type(other.image)})")
        else:
            if (self.image != other.image).any():
                cnt = (self.image != other.image).sum()
                differences.append(f"   Image is different: {cnt} different pixels.")
        if self.latitude != other.latitude:
            differences.append(f"   Latitude is different. (self: {self.latitude}, other: {other.latitude})")
        if self.longitude != other.longitude:
            differences.append(f"   Longitude is different. (self: {self.longitude}, other: {other.longitude})")
        if self.author_email != other.author_email:
            differences.append(f"   Author email is different. (self: {self.author_email}, other: {other.author_email})")
        if self.image_datetime_raw != other.image_datetime_raw:
            differences.append(f"   Date is different. (self: {self.image_datetime_raw}, other: {other.image_datetime_raw})")
        if self.date != other.date:
            differences.append(f"   Date is different. (self: {self.date}, other: {other.date})")
        if self.time != other.time:
            differences.append(f"   Time is different. (self: {self.time}, other: {other.time})")
        if self.uploaded_file != other.uploaded_file:
            differences.append("   Uploaded filename is different.")
        if self.image_md5 != other.image_md5:
            differences.append("   Image MD5 hash is different.")
        
        if differences:
            print(f"Observations have {len(differences)} differences:")
            for diff in differences:
                print(diff)
        else:
            print("Observations are the same.")

    def __ne__(self, other):
        return not self.__eq__(other)

    def to_dict(self):
        return {
            #"image": self.image,
            "image_filename": self.uploaded_file.name if self.uploaded_file else None,
            "image_md5": self.image_md5,
            #"image_md5": hashlib.md5(self.uploaded_file.read()).hexdigest() if self.uploaded_file else generate_random_md5(),
            "latitude": self.latitude,
            "longitude": self.longitude,
            "author_email": self.author_email,
            "image_datetime_raw": self.image_datetime_raw,
            "date": str(self.date),
            "time": str(self.time),
            "selected_class": self._selected_class,
            "top_prediction": self._top_predictions[0] if len(self._top_predictions) else None,
            "class_overriden": self._class_overriden,
            
            #"uploaded_file": self.uploaded_file # can't serialize this in json, not sent to dataset anyway.
        }

    @classmethod
    def from_dict(cls, data):
        return cls(
            image=data.get("image"),
            latitude=data.get("latitude"),
            longitude=data.get("longitude"),
            author_email=data.get("author_email"),
            image_datetime_raw=data.get("image_datetime_raw"),
            date=data.get("date"),
            time=data.get("time"),
            uploaded_file=data.get("uploaded_file"),
            image_hash=data.get("image_md5")
        )

    @classmethod
    def from_input(cls, input):
        return cls(
            image=input.image,
            latitude=input.latitude,
            longitude=input.longitude,
            author_email=input.author_email,
            image_datetime_raw=input.image_datetime_raw,
            date=input.date,
            time=input.time,
            uploaded_file=input.uploaded_file,
            image_hash=input.image_hash
        )