Spaces:
Sleeping
Sleeping
File size: 12,743 Bytes
de87a9b f14dad2 de87a9b 3735c6f de87a9b 6cdc7e8 de87a9b cfbfcc8 de87a9b 05b3cf6 de87a9b 3735c6f de87a9b f14dad2 de87a9b 3735c6f de87a9b 3735c6f de87a9b 51fd535 de87a9b 3735c6f de87a9b 51fd535 de87a9b 51fd535 de87a9b 3735c6f de87a9b 51fd535 de87a9b 51fd535 de87a9b 3735c6f de87a9b 51fd535 de87a9b 51fd535 de87a9b 51fd535 de87a9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import pytest
from unittest.mock import MagicMock, patch
from streamlit.testing.v1 import AppTest
import time
from input.input_handling import spoof_metadata, load_debug_autopopulate
from input.input_observation import InputObservation
from input.input_handling import buffer_uploaded_files
from streamlit.runtime.uploaded_file_manager import UploadedFile
from numpy import ndarray
from test_demo_multifile_upload import (
mock_uploadedFile_List_ImageData, mock_uploadedFile,
MockUploadedFile, )
from test_demo_input_sidebar import (
verify_initial_session_state, verify_session_state_after_processing_files,
wrapped_buffer_uploaded_files_allowed_once)
from test_demo_input_sidebar import _cprint, OKBLUE, OKGREEN, OKCYAN, FAIL, PURPLE
TIMEOUT = 30
SCRIPT_UNDER_TEST = "src/main.py"
def debug_check_images(at:AppTest, msg:str=""):
_cprint(f"[I] num images in session state {msg}: {len(at.session_state.images)}", OKCYAN)
for i, (key, img) in enumerate(at.session_state.images.items()):
#for i, img in enumerate(at.session_state.images.values()):
#assert isinstance(img, ndarray)
if isinstance(img, ndarray):
print(f"image {i}: {img.shape} [{key}]")
else:
print(f"image {i}: {type(img)} [{key}]")
def nooop(*args, **kwargs):
_cprint("skipping the buffering -- shoul only happen once", FAIL)
raise RuntimeError
pass
@pytest.mark.end2end
@pytest.mark.slow
@patch("streamlit.file_uploader")
def test_click_validate_after_data_entry(mock_file_rv: MagicMock, mock_uploadedFile_List_ImageData):
# this test goes through several stages of the workflow
#
# 1. get app started
# first we need to upload >0 files
num_files = 2
mock_files = mock_uploadedFile_List_ImageData(num_files=num_files)
mock_file_rv.return_value = mock_files
t0 = time.time()
at = AppTest.from_file(SCRIPT_UNDER_TEST, default_timeout=TIMEOUT).run()
t1 = time.time()
_cprint(f"[T] time to load: {t1-t0:.2f}s", PURPLE)
verify_initial_session_state(at)
# 1-Test: at this initial state, we expect:
# - the workflow state is 'doing_data_entry'
# - the validate button is disabled
# - the infer button (on main tab) is disabled
# - note: props of the button: label, value, proto, disabled.
# don't need to check others here
assert at.session_state.workflow_fsm.current_state == 'doing_data_entry'
assert at.sidebar.button[1].disabled == True
infer_button = at.tabs[0].button[0]
assert infer_button.disabled == True
# 2. upload files, enter email, and trigger the callback
if not load_debug_autopopulate():
# fill the text box with a dummy email
at.session_state.input_author_email = "[email protected]"
# put the mocked file_upload into session state, as if it were the result of a file upload, with the key 'file_uploader_data'
at.session_state["file_uploader_data"] = mock_files
# the side effect cant run until now (need file_uploader_data to be set)
if wrapped_buffer_uploaded_files_allowed_once.called == 0:
mock_file_rv.side_effect = wrapped_buffer_uploaded_files_allowed_once
else:
mock_file_rv.side_effect = nooop
_cprint(f"[I] buffering called {wrapped_buffer_uploaded_files_allowed_once.called} times", OKGREEN)
t2 = time.time()
at.run()
t3 = time.time()
_cprint(f"[T] time to run with file processing: {t3-t2:.2f}s", PURPLE)
# 2-Test: after uploading the files, we should have:
# - the workflow state moved on to 'data_entry_complete'
# - several changes applied to the session_state (handled by verify_session_state_after_processing_files)
# - the validate button is enabled
# - the infer button is still disabled
verify_session_state_after_processing_files(at, num_files)
debug_check_images(at, "after processing files")
_cprint(f"[I] buffering called {wrapped_buffer_uploaded_files_allowed_once.called} times", OKGREEN)
assert at.session_state.workflow_fsm.current_state == 'data_entry_complete'
assert at.sidebar.button[1].disabled == False
infer_button = at.tabs[0].button[0]
assert infer_button.disabled == True
print(at.markdown[0])
# 3. data entry complete, click the validate button
at.sidebar.button[1].click().run()
t4 = time.time()
_cprint(f"[T] time to run step 3: {t4-t3:.2f}s", PURPLE)
# 3-Test: after validating the data, we should have:
# - the state (backend) should move to data_entry_validated
# - the UI should show the new state (in sidebar.markdown[0])
# - the infer button should now be enabled
# - the validate button should be disabled
assert at.session_state.workflow_fsm.current_state == 'data_entry_validated'
assert "data_entry_validated" in at.sidebar.markdown[0].value
# TODO: this part of the test currently fails because hte main code doesn't
# change the button; in this exec path/branch, the button is not rendered at all.
# so if we did at.run() after the click, the button is absent entierly!
# If we don't run, the button is still present in its old state (enabled)
# for btn in at.sidebar.button:
# print(f"button: {btn.label} {btn.disabled}")
# #assert at.sidebar.button[1].disabled == True
infer_button = at.tabs[0].button[0]
assert infer_button.disabled == False
debug_check_images(at, "after validation button")
_cprint(f"[I] buffering called {wrapped_buffer_uploaded_files_allowed_once.called} times", OKGREEN)
# # at this point, we want to retrieve the main area, get the tabs child,
# # and then on the first tab get the first button & check not disabled (will click next step)
# #print(at._tree)
# # fragile: assume the first child is 'main'
# # robust: walk through children until we find the main area
# # main_area = at._tree.children[0]
# # main_area = None
# # for _id, child in at._tree.children.items():
# # if child.type == 'main':
# # main_area = child
# # break
# # assert main_area is not None
# # ah, we can go direct to the tabs. they are only plausible in main. (not supported in sidebar)
# infer_tab = at.tabs[0]
# #print(f"tab: {infer_tab}")
# #print(dir(infer_tab))
# btn = infer_tab.button[0]
# print(f"button: {btn}")
# print(btn.label)
# print(btn.disabled)
# infer_button = at.tabs[0].button[0]
# assert infer_button.disabled == False
# check pre-ML click that we are ready for it.
debug_check_images(at, "before clicking infer. ")
_cprint(f"[I] buffering called {wrapped_buffer_uploaded_files_allowed_once.called} times", OKGREEN)
TEST_ML = True
SKIP_CHECK_OVERRIDE = False
# 4. launch ML inference by clicking the button
if TEST_ML:
# infer_button = at.tabs[0].button[0]
# assert infer_button.disabled == False
# now test the ML step
infer_button.click().run()
t5 = time.time()
_cprint(f"[T] time to run step 4: {t5-t4:.2f}s", PURPLE)
# 4-Test: after clicking the infer button, we should have:
# - workflow should have moved on to 'ml_classification_completed'
# - the main tab button should now have new text (confirm species predictions)
# - we should have the results presented on the main area
# - 2+6 image elements (the source image, images of 3 predictions) * num_files
# - 2 dropdown elements (one for each image) + 1 for the page selector
# - all of the observations should have class_overriden == False
assert at.session_state.workflow_fsm.current_state == 'ml_classification_completed'
# check the observations
for i, obs in enumerate(at.session_state.observations.values()):
print(f"obs {i}: {obs}")
assert isinstance(obs, InputObservation)
assert obs.class_overriden == False
# check the visual elements
infer_tab = at.tabs[0]
print(f"tab: {infer_tab}")
img_elems = infer_tab.get("imgs")
print(f"imgs: {len(img_elems)}")
assert len(img_elems) == num_files*4
infer_button = infer_tab.button[0]
assert infer_button.disabled == False
assert 'Confirm species predictions' in infer_button.label
# we have 1 per file, and also one more to select the page of results being shown.
# - hmm, so we aren't going to see the right number if it goes multipage :(
# - but this test specifically uses 2 inputs.
assert len(infer_tab.selectbox) == num_files + 1
# 5. manually override the class of one of the observations
idx_to_override = 1 # don't forget, we also have the page selector first.
infer_tab.selectbox[idx_to_override + 1].select_index(20).run() # FRAGILE!
# 5-TEST.
# - expect that all class_overriden are False, except for the one we just set
# - also expect there still to be num_files*4 images (2+6 per file) etc
for i, obs in enumerate(at.session_state.observations.values()):
_cprint(f"obs {i}: {obs.class_overriden} {obs.to_dict()}", OKBLUE)
assert isinstance(obs, InputObservation)
if not SKIP_CHECK_OVERRIDE:
if i == idx_to_override:
assert obs.class_overriden == True
else:
assert obs.class_overriden == False
# 6. confirm the species predictions, get ready to allow upload
infer_tab = at.tabs[0]
confirm_button = infer_tab.button[0]
confirm_button.click().run()
t6 = time.time()
_cprint(f"[T] time to run step 5: {t6-t5:.2f}s", PURPLE)
# 6-TEST. Now we expect to see:
# - the workflow state should be 'manual_inspection_completed'
# - the obsevations should be as per the previous step
# - the main tab button should now have new text (Upload all observations)
# - we should have 4n images
# - we should have only 1 select box (page), (passed stage for overriding class)
assert at.session_state.workflow_fsm.current_state == 'manual_inspection_completed'
for i, obs in enumerate(at.session_state.observations.values()):
_cprint(f"obs {i}: {obs.class_overriden} {obs.to_dict()}", OKBLUE)
assert isinstance(obs, InputObservation)
if not SKIP_CHECK_OVERRIDE:
if i == idx_to_override:
assert obs.class_overriden == True
else:
assert obs.class_overriden == False
# we have to trigger a manual refresh? no, it seems that sometimes the tests fail, maybe
# because the script is slow? it is not unique to here, various points that usually pass
# occasionally fail because elements haven't yet been drawn. I suppose the timing aspect
# internally by AppTest is not perfect (selenium has moved from explicit to implicit waits,
# though I didn't look too deeply whether apptest also has an explicit wait mechanism)
# # time.sleep(1)
# #at.run()
infer_tab = at.tabs[0]
upload_button = infer_tab.button[0]
assert upload_button.disabled == False
assert 'Upload all observations' in upload_button.label
img_elems = infer_tab.get("imgs")
assert len(img_elems) == num_files*4
assert len(infer_tab.selectbox) == 1
# 7. upload the observations
upload_button.click().run()
t7 = time.time()
_cprint(f"[T] time to run step 6: {t7-t6:.2f}s", PURPLE)
# 7-TEST. Now we expect to see:
# - workflow state should be 'data_uploaded'
# - nothing else in the back end should have changed (is that a mistake? should we
# add a boolean tracking if the observations have been uploaded?)
# - a toast presented for each observation uploaded
# - the images should still be there, and 1 select box (page)
# - no more button on the main area
assert at.session_state.workflow_fsm.current_state == 'data_uploaded'
#print(at.toast)
assert len(at.toast) == num_files
infer_tab = at.tabs[0]
img_elems = infer_tab.get("imgs")
assert len(img_elems) == num_files*4
assert len(infer_tab.selectbox) == 1
assert len(infer_tab.button) == 0
|