File size: 12,743 Bytes
de87a9b
 
 
 
 
f14dad2
de87a9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3735c6f
de87a9b
6cdc7e8
de87a9b
 
 
 
 
 
 
 
 
 
 
 
cfbfcc8
de87a9b
 
 
 
05b3cf6
 
de87a9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3735c6f
de87a9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f14dad2
 
 
 
de87a9b
 
 
 
 
 
 
 
 
 
 
 
 
 
3735c6f
de87a9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3735c6f
de87a9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51fd535
de87a9b
 
 
 
 
 
 
3735c6f
de87a9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51fd535
 
de87a9b
 
 
 
 
51fd535
de87a9b
 
 
 
 
 
 
 
 
 
 
 
3735c6f
de87a9b
 
 
 
 
 
 
 
 
 
51fd535
de87a9b
 
 
 
 
 
 
51fd535
 
 
 
 
 
 
de87a9b
 
 
 
 
 
 
 
 
 
 
 
 
3735c6f
de87a9b
 
 
 
 
 
 
 
 
 
51fd535
de87a9b
51fd535
de87a9b
 
 
 
51fd535
de87a9b
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import pytest
from unittest.mock import MagicMock, patch
from streamlit.testing.v1 import AppTest
import time

from input.input_handling import spoof_metadata, load_debug_autopopulate
from input.input_observation import InputObservation
from input.input_handling import buffer_uploaded_files

from streamlit.runtime.uploaded_file_manager import UploadedFile
from numpy import ndarray

from test_demo_multifile_upload import (
    mock_uploadedFile_List_ImageData, mock_uploadedFile,
    MockUploadedFile, )


from test_demo_input_sidebar import (
    verify_initial_session_state, verify_session_state_after_processing_files, 
    wrapped_buffer_uploaded_files_allowed_once)

from test_demo_input_sidebar import _cprint, OKBLUE, OKGREEN, OKCYAN, FAIL, PURPLE

TIMEOUT = 30
SCRIPT_UNDER_TEST = "src/main.py"

def debug_check_images(at:AppTest, msg:str=""):
    _cprint(f"[I] num images in session state {msg}: {len(at.session_state.images)}", OKCYAN)
    for i, (key, img) in enumerate(at.session_state.images.items()):
    #for i, img in enumerate(at.session_state.images.values()):
        #assert isinstance(img, ndarray)
        if isinstance(img, ndarray):
            print(f"image {i}: {img.shape} [{key}]")
        else:
            print(f"image {i}: {type(img)} [{key}]")    

def nooop(*args, **kwargs):
    _cprint("skipping the buffering -- shoul only happen once", FAIL)
    raise RuntimeError
    pass

@pytest.mark.end2end
@pytest.mark.slow
@patch("streamlit.file_uploader")
def test_click_validate_after_data_entry(mock_file_rv: MagicMock, mock_uploadedFile_List_ImageData):
    # this test goes through several stages of the workflow
    # 
    
    # 1. get app started 
    
    # first we need to upload >0 files
    num_files = 2
    mock_files = mock_uploadedFile_List_ImageData(num_files=num_files)
    mock_file_rv.return_value = mock_files
    
    t0 = time.time()
    at = AppTest.from_file(SCRIPT_UNDER_TEST, default_timeout=TIMEOUT).run()
    t1 = time.time()
    _cprint(f"[T] time to load: {t1-t0:.2f}s", PURPLE)
    verify_initial_session_state(at)

    # 1-Test: at this initial state, we expect:
    # - the workflow state is 'doing_data_entry'
    # - the validate button is disabled
    # - the infer button (on main tab) is disabled
    #   - note: props of the button: label, value, proto, disabled. 
    #     don't need to check others here

    assert at.session_state.workflow_fsm.current_state == 'doing_data_entry'
    assert at.sidebar.button[1].disabled == True
    infer_button = at.tabs[0].button[0]
    assert infer_button.disabled == True 


    # 2. upload files, enter email, and trigger the callback
    if not load_debug_autopopulate():
        # fill the text box with a dummy email
        at.session_state.input_author_email = "[email protected]"

    # put the mocked file_upload into session state, as if it were the result of a file upload, with the key 'file_uploader_data'
    at.session_state["file_uploader_data"] = mock_files
    # the side effect cant run until now (need file_uploader_data to be set)
    if wrapped_buffer_uploaded_files_allowed_once.called == 0:
        mock_file_rv.side_effect = wrapped_buffer_uploaded_files_allowed_once
    else:
        mock_file_rv.side_effect = nooop
        
    _cprint(f"[I] buffering called {wrapped_buffer_uploaded_files_allowed_once.called} times", OKGREEN)

    t2 = time.time()
    at.run()
    t3 = time.time()    
    _cprint(f"[T] time to run with file processing: {t3-t2:.2f}s", PURPLE)
    
    # 2-Test: after uploading the files, we should have:
    # - the workflow state moved on to 'data_entry_complete'
    # - several changes applied to the session_state (handled by verify_session_state_after_processing_files)
    # - the validate button is enabled
    # - the infer button is still disabled
    
    verify_session_state_after_processing_files(at, num_files)
    debug_check_images(at, "after processing files")
    _cprint(f"[I] buffering called {wrapped_buffer_uploaded_files_allowed_once.called} times", OKGREEN)

    assert at.session_state.workflow_fsm.current_state == 'data_entry_complete'

    assert at.sidebar.button[1].disabled == False
    infer_button = at.tabs[0].button[0]
    assert infer_button.disabled == True 

    print(at.markdown[0])

    # 3. data entry complete, click the validate button
    at.sidebar.button[1].click().run()
    t4 = time.time()
    _cprint(f"[T] time to run step 3: {t4-t3:.2f}s", PURPLE)

    # 3-Test: after validating the data, we should have:
    # - the state (backend) should move to data_entry_validated
    # - the UI should show the new state (in sidebar.markdown[0])
    # - the infer button should now be enabled
    # - the validate button should be disabled
    
    assert at.session_state.workflow_fsm.current_state == 'data_entry_validated'
    assert "data_entry_validated" in at.sidebar.markdown[0].value 
    
    # TODO: this part of the test currently fails because hte main code doesn't
    # change the button; in this exec path/branch, the button is not rendered at all.
    # so if we did at.run() after the click, the button is absent entierly! 
    # If we don't run, the button is still present in its old state (enabled)
    # for btn in at.sidebar.button:
    #     print(f"button: {btn.label} {btn.disabled}")
    # #assert at.sidebar.button[1].disabled == True

    infer_button = at.tabs[0].button[0]
    assert infer_button.disabled == False 
    
    debug_check_images(at, "after validation button")
    _cprint(f"[I] buffering called {wrapped_buffer_uploaded_files_allowed_once.called} times", OKGREEN)

    # # at this point, we want to retrieve the main area, get the tabs child, 
    # # and then on the first tab get the first button & check not disabled (will click next step)
    # #print(at._tree)
    # # fragile: assume the first child is 'main'
    # # robust: walk through children until we find the main area
    # # main_area = at._tree.children[0]
    # # main_area = None
    # # for _id, child in at._tree.children.items():
    # #     if child.type == 'main':
    # #         main_area = child
    # #         break
    # # assert main_area is not None

    # # ah, we can go direct to the tabs. they are only plausible in main. (not supported in sidebar)
    # infer_tab = at.tabs[0]
    # #print(f"tab: {infer_tab}")
    # #print(dir(infer_tab))
    # btn = infer_tab.button[0]
    # print(f"button: {btn}")
    # print(btn.label)
    # print(btn.disabled) 

    # infer_button = at.tabs[0].button[0]
    # assert infer_button.disabled == False

    # check pre-ML click that we are ready for it.

    debug_check_images(at, "before clicking infer. ")
    _cprint(f"[I] buffering called {wrapped_buffer_uploaded_files_allowed_once.called} times", OKGREEN)
    TEST_ML = True
    SKIP_CHECK_OVERRIDE = False
    # 4. launch ML inference by clicking the button
    if TEST_ML:
        # infer_button = at.tabs[0].button[0]
        # assert infer_button.disabled == False
        # now test the ML step
        infer_button.click().run()
        t5 = time.time()
        _cprint(f"[T] time to run step 4: {t5-t4:.2f}s", PURPLE)

        # 4-Test: after clicking the infer button, we should have:
        # - workflow should have moved on to 'ml_classification_completed'
        # - the main tab button should now have new text (confirm species predictions)
        # - we should have the results presented on the main area
        #   - 2+6 image elements (the source image, images of 3 predictions) * num_files
        #   - 2 dropdown elements (one for each image) + 1 for the page selector
        #   - all of the observations should have class_overriden == False

        assert at.session_state.workflow_fsm.current_state == 'ml_classification_completed'
        # check the observations
        for i, obs in enumerate(at.session_state.observations.values()):
            print(f"obs {i}: {obs}")
            assert isinstance(obs, InputObservation)
            assert obs.class_overriden == False

        # check the visual elements
        infer_tab = at.tabs[0]
        print(f"tab: {infer_tab}")  
        img_elems = infer_tab.get("imgs")
        print(f"imgs: {len(img_elems)}")
        assert len(img_elems) == num_files*4

        infer_button = infer_tab.button[0]
        assert infer_button.disabled == False
        assert 'Confirm species predictions' in infer_button.label

        # we have 1 per file, and also one more to select the page of results being shown.
        # - hmm, so we aren't going to see the right number if it goes multipage :(
        # - but this test specifically uses 2 inputs. 
        assert len(infer_tab.selectbox) == num_files + 1 
        
        
        # 5. manually override the class of one of the observations
        idx_to_override = 1  # don't forget, we also have the page selector first.
        infer_tab.selectbox[idx_to_override + 1].select_index(20).run()  # FRAGILE!
            
        # 5-TEST. 
        # - expect that all class_overriden are False, except for the one we just set
        # - also expect there still to be num_files*4 images (2+6 per file) etc
        for i, obs in enumerate(at.session_state.observations.values()):
            _cprint(f"obs {i}: {obs.class_overriden} {obs.to_dict()}", OKBLUE)
            assert isinstance(obs, InputObservation)
            if not SKIP_CHECK_OVERRIDE:
                if i == idx_to_override:
                    assert obs.class_overriden == True
                else:
                    assert obs.class_overriden == False
                
        # 6. confirm the species predictions, get ready to allow upload
        infer_tab = at.tabs[0]
        confirm_button = infer_tab.button[0]
        confirm_button.click().run()
        t6 = time.time()
        _cprint(f"[T] time to run step 5: {t6-t5:.2f}s", PURPLE)
        
        # 6-TEST. Now we expect to see: 
        # - the workflow state should be 'manual_inspection_completed'
        # - the obsevations should be as per the previous step
        # - the main tab button should now have new text (Upload all observations)
        # - we should have 4n images
        # - we should have only 1 select box (page), (passed stage for overriding class)
        
        assert at.session_state.workflow_fsm.current_state == 'manual_inspection_completed'
        for i, obs in enumerate(at.session_state.observations.values()):
            _cprint(f"obs {i}: {obs.class_overriden} {obs.to_dict()}", OKBLUE)
            assert isinstance(obs, InputObservation)
            if not SKIP_CHECK_OVERRIDE:
                if i == idx_to_override:
                    assert obs.class_overriden == True
                else:
                    assert obs.class_overriden == False
        
        # we have to trigger a manual refresh? no, it seems that sometimes the tests fail, maybe 
        #   because the script is slow? it is not unique to here, various points that usually pass
        #   occasionally fail because elements haven't yet been drawn. I suppose the timing aspect 
        #   internally by AppTest is not perfect (selenium has moved from explicit to implicit waits,
        #   though I didn't look too deeply whether apptest also has an explicit wait mechanism)
        # # time.sleep(1)
        # #at.run()
        infer_tab = at.tabs[0]
        upload_button = infer_tab.button[0]
        assert upload_button.disabled == False
        assert 'Upload all observations' in upload_button.label
        
        img_elems = infer_tab.get("imgs")
        assert len(img_elems) == num_files*4
        
        assert len(infer_tab.selectbox) == 1 
        
        # 7. upload the observations
        upload_button.click().run()
        t7 = time.time()
        _cprint(f"[T] time to run step 6: {t7-t6:.2f}s", PURPLE)

        # 7-TEST. Now we expect to see:
        # - workflow state should be 'data_uploaded'
        # - nothing else in the back end should have changed (is that a mistake? should we 
        #   add a boolean tracking if the observations have been uploaded?)
        # - a toast presented for each observation uploaded
        # - the images should still be there, and 1 select box (page)
        # - no more button on the main area
        
        assert at.session_state.workflow_fsm.current_state == 'data_uploaded'
        #print(at.toast)
        assert len(at.toast) == num_files
        infer_tab = at.tabs[0]
        
        img_elems = infer_tab.get("imgs")
        assert len(img_elems) == num_files*4
        assert len(infer_tab.selectbox) == 1 
        assert len(infer_tab.button) == 0