Saurabh46 commited on
Commit
deae5d2
·
1 Parent(s): ac0c190

MyCommit 1

Browse files
Files changed (1) hide show
  1. app.py +49 -0
app.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader, LLMPredictor, ServiceContext, StorageContext, load_index_from_storage
2
+ from langchain import OpenAI
3
+ import gradio
4
+ import os
5
+
6
+ os.environ["OPENAI_API_KEY"] = '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'
7
+
8
+ def construct_index(directory_path):
9
+ # set number of output tokens
10
+ num_outputs = 256
11
+
12
+ _llm_predictor = LLMPredictor(llm=OpenAI(temperature=0.5, model_name="gpt-3.5-turbo", max_tokens=num_outputs))
13
+
14
+ service_context = ServiceContext.from_defaults(llm_predictor=_llm_predictor)
15
+
16
+ docs = SimpleDirectoryReader(directory_path).load_data()
17
+
18
+ index = GPTVectorStoreIndex.from_documents(docs, service_context=service_context)
19
+
20
+ #Directory in which the indexes will be stored
21
+ index.storage_context.persist(persist_dir="indexes")
22
+
23
+ return index
24
+
25
+ def chatbot(input_text):
26
+
27
+ # rebuild storage context
28
+ storage_context = StorageContext.from_defaults(persist_dir="indexes")
29
+
30
+ #load indexes from directory using storage_context
31
+ query_engne = load_index_from_storage(storage_context).as_query_engine()
32
+
33
+ response = query_engne.query(input_text)
34
+
35
+ #returning the response
36
+ return response.response
37
+
38
+ #Creating the web UIusing gradio
39
+ iface = gradio.Interface(fn=chatbot,
40
+ inputs=gradio.inputs.Textbox(lines=5, label="Enter your question here"),
41
+ outputs="text",
42
+ title="Custom-trained AI Chatbot")
43
+
44
+ #Constructing indexes based on the documents in traininData folder
45
+ #This can be skipped if you have already trained your app and need to re-run it
46
+ index = construct_index("trainingData")
47
+
48
+ #launching the web UI using gradio
49
+ iface.launch(share=True)