Spaces:
Runtime error
Runtime error
MyCommit 1
Browse files
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader, LLMPredictor, ServiceContext, StorageContext, load_index_from_storage
|
2 |
+
from langchain import OpenAI
|
3 |
+
import gradio
|
4 |
+
import os
|
5 |
+
|
6 |
+
os.environ["OPENAI_API_KEY"] = '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'
|
7 |
+
|
8 |
+
def construct_index(directory_path):
|
9 |
+
# set number of output tokens
|
10 |
+
num_outputs = 256
|
11 |
+
|
12 |
+
_llm_predictor = LLMPredictor(llm=OpenAI(temperature=0.5, model_name="gpt-3.5-turbo", max_tokens=num_outputs))
|
13 |
+
|
14 |
+
service_context = ServiceContext.from_defaults(llm_predictor=_llm_predictor)
|
15 |
+
|
16 |
+
docs = SimpleDirectoryReader(directory_path).load_data()
|
17 |
+
|
18 |
+
index = GPTVectorStoreIndex.from_documents(docs, service_context=service_context)
|
19 |
+
|
20 |
+
#Directory in which the indexes will be stored
|
21 |
+
index.storage_context.persist(persist_dir="indexes")
|
22 |
+
|
23 |
+
return index
|
24 |
+
|
25 |
+
def chatbot(input_text):
|
26 |
+
|
27 |
+
# rebuild storage context
|
28 |
+
storage_context = StorageContext.from_defaults(persist_dir="indexes")
|
29 |
+
|
30 |
+
#load indexes from directory using storage_context
|
31 |
+
query_engne = load_index_from_storage(storage_context).as_query_engine()
|
32 |
+
|
33 |
+
response = query_engne.query(input_text)
|
34 |
+
|
35 |
+
#returning the response
|
36 |
+
return response.response
|
37 |
+
|
38 |
+
#Creating the web UIusing gradio
|
39 |
+
iface = gradio.Interface(fn=chatbot,
|
40 |
+
inputs=gradio.inputs.Textbox(lines=5, label="Enter your question here"),
|
41 |
+
outputs="text",
|
42 |
+
title="Custom-trained AI Chatbot")
|
43 |
+
|
44 |
+
#Constructing indexes based on the documents in traininData folder
|
45 |
+
#This can be skipped if you have already trained your app and need to re-run it
|
46 |
+
index = construct_index("trainingData")
|
47 |
+
|
48 |
+
#launching the web UI using gradio
|
49 |
+
iface.launch(share=True)
|